摘要:水面污染严重影响水面景观和水体生态. 针对识别水面污染过程中水面场景复杂、小目标污染物特征难以提取等问题, 本文提出一种基于深度可分离卷积与交叉注意力算法模块(deep-wise convolution and cross attention, DCCA). 使用深度可分离卷积降低模型的参数量和计算量, 使用交叉注意力建立不同尺度特征图之间的关系, 使模型更好地理解上下文信息并提高识别复杂场景和小目标的能力. 实验结果表明, 添加DCCA模块后平均精确率提升了1.8%, 达到了88.7%. 并使用较少的显存占用提高了水面污染的检测效果.