摘要:针对现有图像去雾算法在处理道路交通图像时无法同时兼顾去雾效果和实时性的问题, 本文以快速一体化网络去雾算法(AOD-Net)为基础进行改进. 首先, 在AOD-Net中添加SE通道注意力, 以自适应的方式分配通道权重, 关注重要特征; 其次, 引入金字塔池化模块, 扩大网络的感受野, 并融合不同尺度特征, 更好地捕捉图像信息; 最后, 使用复合损失函数同时关注图像像素信息和结构纹理信息. 实验结果表明, 改进后的AOD-Net算法对道路交通图像去雾后的峰值信噪比提升了2.52 dB, 结构相似度达到了91.2%, 算法复杂度和去雾耗时略微增加, 但仍满足实时要求.