基于定向变异策略的改进克隆选择算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61977021); 湖北省重点研发计划(2021BAA184)


Improved Clonal Selection Algorithm Based on Directed Mutation Strategy
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    本文针对克隆选择算法(CSA)存在的问题, 如搜索速度慢、收敛精度低、容易陷入局部最优, 提出一种基于定向变异的改进克隆选择算法(DMSCSA). 该算法引入Halton序列来生成均匀分布的初始化种群, 实现对解空间更高效的搜索; 采用黄金正弦变异策略在迭代过程中对优秀抗体定向变异, 提升算法收敛速度; 引入柯西变异策略, 能够在保证种群多样性的前提下提高算法跳出局部最优的能力. 使用CEC2019测试函数集中的8个不同的测试函数并与其他同类型算法进行对比实验, 通过实验结果可知, DMSCSA算法在寻优精度、收敛速度等方面均有提升.

    Abstract:

    This study proposes an improved clonal selection algorithm based on directed mutation strategy (DMSCSA) to address the problems of the clonal selection algorithm (CSA), such as slow search speed, low convergence accuracy, and easy fall into local optimum. The algorithm introduces the Halton sequence to initialize the population, which enhances the uniformity of the initial population distribution and realizes a more efficient search of the solution space. The golden sine mutation strategy is adopted to conduct the directional mutation of the excellent antibodies in the iterative process, which improves the convergence speed of the algorithm. The introduction of the Cauchy mutation strategy can improve the algorithm’s capability to jump out of the local optimum while ensuring population diversity. Eight different test functions in the CEC2019 test function set are utilized and compared with other algorithms of the same type. The experimental results show that the DMSCSA improves the optimization accuracy and convergence speed.

    参考文献
    相似文献
    引证文献
引用本文

彭旭,杨超,张文豪,王道维,蒋碧波.基于定向变异策略的改进克隆选择算法.计算机系统应用,2024,33(3):226-232

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-07-02
  • 最后修改日期:2023-08-08
  • 录用日期:
  • 在线发布日期: 2024-01-18
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号