基于改进MobileNetV3-Small的皮肤肿瘤分类
作者:
基金项目:

国家重点研发计划(2020YFA0608000)


Skin Tumor Classification Based on Improved MobileNetV3-Small
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [31]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    许多皮肤癌疾病具有明显的初期患病征兆. 目前皮肤癌诊断主要依靠具有专业知识的医务工作者进行诊断, 其存在着耗时长、复用性低等问题. 针对上述问题, 该研究提出一种基于改进MobileNetV3-Small的轻量级皮肤肿瘤识别模型. 首先提出了一种基于坐标注意力机制模块(coordinate attention, CA)的CaCo注意力模块. 其次针对皮肤肿瘤数据集样本分布不均衡, 提出了一种联合多损失函数来增强模型对少样本病例的学习能力. 实验结果表明, 改进的MobileNetV3-CaCo模型精确率、平衡准确性和模型参数量分别为93.39%、86.35%和2.29M, 达到了理想的识别效果.

    Abstract:

    Many skin cancer diseases have obvious early symptoms. Currently, the diagnosis of skin cancer mainly relies on medical workers with professional knowledge, bringing the problems such as long time consumption and low reusability. In response to these problems, a lightweight skin disease recognition model based on improved MobileNetV3-Small is proposed in this study. Firstly, a CaCo attention module based on coordinate attention (CA) mechanism is proposed, Secondly, for the uneven distribution of the samples of skin-cancer datasets, a combination of multiple loss functions is proposed to enhance the learning ability of the model for cases with few samples. The improved MobileNetV3-CaCo model has an accuracy, balance accuracy, and model parameter quantity of 93.39%, 86.35%, and 2.29M, respectively, thus ideal recognition results are achieved.

    参考文献
    [1] 樊文龙, 王红心, 杨晓雨, 等. 1990–2019年亚洲60–89岁老年人皮肤病的疾病负担. 中国皮肤性病学杂志, 2022, 36(11): 1257–1264.
    [2] Karimkhani C, Dellavalle RP, Coffeng LE, et al. Global skin disease morbidity and mortality: An update from the global burden of disease study 2013. JAMA Dermatology, 2017, 153(5): 406–412.
    [3] 中华医学会皮肤性病学分会皮肤肿瘤研究中心, 中国医师协会皮肤科医师分会皮肤肿瘤学组. 皮肤基底细胞癌诊疗专家共识(2021). 中华皮肤科杂志, 2021, 54(9): 757–764.
    [4] 姚侃敏, 潘自来, 宋琦, 等. 影像云在放射诊断质控工作中的应用价值. 中国医学计算机成像杂志, 2018, 24(5): 401–405.
    [5] Han SS, Kim MS, Lim W, et al. Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm. Journal of Investigative Dermatology, 2018, 138(7): 1529–1538.
    [6] 王诗琪, 刘洁, 朱晨雨, 等. 皮肤科医师与深度卷积神经网络诊断色素痣和脂溢性角化病皮肤镜图像比较. 中华皮肤科杂志, 2018, 51(7): 486–489.
    [7] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature, 2017, 542(7639): 115–118.
    [8] Han SS, Park I, Chang SE, et al. Augmented intelligence dermatology: Deep neural networks empower medical professionals in diagnosing skin cancer and predicting treatment options for 134 skin disorders. Journal of Investigative Dermatology, 2020, 140(9): 1753–1761.
    [9] Fujisawa Y, Otomo Y, Ogata Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. British Journal of Dermatology, 2019, 180(2): 373–381.
    [10] 王路. 基于机器学习的皮肤病图像分类[硕士学位论文]. 杭州: 浙江大学, 2018.
    [11] 孔祥勇. 基于深度学习的黑色素瘤分类问题的研究[硕士学位论文]. 杭州: 浙江工业大学, 2019.
    [12] Li WP, Zhuang JX, Wang RX, et al. Fusing metadata and dermoscopy images for skin disease diagnosis. Proceedings of the 17th IEEE International Symposium on Biomedical Imaging. Iowa City: IEEE, 2020. 1996–2000.
    [13] 殷文君, 黄建华, 纪元法. 基于改进密集卷积网络的皮肤肿瘤分类方法. 计算机工程, 2023, 49(7): 288–294.
    [14] Hekler A, Utikal JS, Enk AH, et al. Pathologist-level classification of histopathological melanoma images with deep neural networks. European Journal of Cancer, 2019, 115: 79–83.
    [15] Howard AG, Zhu ML, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861, 2017.
    [16] Sandler M, Howard A, Zhu ML, et al. MobileNetV2: Inverted residuals and linear bottlenecks. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 4510–4520.
    [17] Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 1314–1324.
    [18] 孙俊, 朱伟栋, 罗元秋, 等. 基于改进MobileNet-V2的田间农作物叶片病害识别. 农业工程学报, 2021, 37(22): 161–169.
    [19] 张伏, 陈自均, 鲍若飞, 等. 基于改进型YOLOv4-LITE轻量级神经网络的密集圣女果识别. 农业工程学报, 2021, 37(16): 270–278.
    [20] Deng J, Dong W, Socher R, et al. ImageNet: A large-scale hierarchical image database. Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami: IEEE, 2009. 248–255.
    [21] 陈立福, 武鸿, 崔先亮, 等. 基于迁移学习的卷积神经网络SAR图像目标识别. 中国空间科学技术, 2018, 38(6): 45–51.
    [22] 苏静雷, 王红军, 王政博, 等. 多通道卷积神经网络和迁移学习的燃气轮机转子故障诊断方法. 电子测量与仪器学报, 2023, 37(3): 132–140.
    [23] 曹城硕, 袁杰. 基于YOLO-Mask算法的口罩佩戴检测方法. 激光与光电子学进展, 2021, 58(8): 0810019.
    [24] 鲍海龙, 万敏, 刘忠祥, 等. 基于区域自我注意力的实时语义分割网络. 激光与光电子学进展, 2021, 58(8): 0810018.
    [25] 陈子涵, 吴浩博, 裴浩东, 等. 基于自注意力深度网络的图像超分辨率重建方法. 激光与光电子学进展, 2021, 58(4): 0410013.
    [26] Hou QB, Zhou DQ, Feng JS. Coordinate attention for efficient mobile network design. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 13713–13722.
    [27] Woo S, Park J, Lee JY, et al. CBAM: Convolutional block attention module. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 3–19.
    [28] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [29] Cao KD, Wei C, Gaidon A, et al. Learning imbalanced datasets with label-distribution-aware margin loss. Proceedings of the 33rd International Conference on Neural Information Processing Systems. Vancouver: Curran Associates Inc., 2019. 140.
    [30] Tschandl P, Rosendahl C, Kittler H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Scientific Data, 2018, 5(1): 180161.
    [31] He KM, Girshick R, Dollár P. Rethinking ImageNet pre-training. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 4918–4927.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

石兴,方睿,罗鸣,刘天锴.基于改进MobileNetV3-Small的皮肤肿瘤分类.计算机系统应用,2023,32(12):120-128

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-08
  • 最后修改日期:2023-07-12
  • 在线发布日期: 2023-11-17
文章二维码
您是第11204797位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号