摘要:为了提高螺纹油套管气密封检测的工作效率, 本文提出了一种基于全局注意力特征融合的螺纹扭矩曲线自动分类网络, 即NAFENet. 具体来说, NAFENet为了增强模型的表达力, 将EfficientNet-B0的卷积结构扩展至11层得到EfficientNet-B11. 同时, 在其每个MBConv卷积层中构建了基于non-local全局注意力和AFF特征融合模块, 以帮助模型获取曲线图像中较为全局的信息, 提高特征提取能力. 实验结果表明, NAFENet在参数量相较于EfficientNet-B0只有小幅度的增加情况下, 曲线识别精度有了较大提升, 在自制UBT_Curve数据集上, 模型准确率达到92.87%.