摘要:交互式图像分割是像素级注释和图像编辑的重要工具. 现存方法大多采取两阶段预测, 首先预测一个粗糙的结果, 在第2个阶段细化之前预测的结果来得到更精确的预测, 为了使在硬件资源受限时, 网络模型仍可以使用, 基于此, 在两阶段共享同一个网络, 为了更好地将标记信息传播到未标记区域, 设计了一个相似度约束传播模块, 在训练时使用了一个简单的原型提取模块来使正点击向量高度内聚, 加速网络收敛, 在推理时移除. 在推理阶段通过使用意图感知模块来捕获细节, 使得预测性能进一步提升. 大量实验表明, 该方法在所有流行的基准测试上与最先进的方法最有可比性, 证明了其有效性.