摘要:在蓬勃发展的自动驾驶技术中, 行人轨迹预测的结果往往会影响到自动驾驶的安全性. 行人轨迹预测技术目前面临着在实际场景中应用时与他人的交互问题, 需要在预测轨迹的同时考虑社会交互性与逻辑自洽. 因此, 提出了一种基于时空图的行人轨迹预测方法, 该方法采用图注意力网络对场景中的行人交互进行建模, 并使用一种自动生成正负样本的方法来通过对比学习降低输出轨迹的碰撞率, 达到了提高输出轨迹的安全性以及逻辑自洽的效果. 在ETH和UCY数据集上进行模型训练与测试, 结果分析表明, 本文提出的方法有效降低了碰撞率, 且预测准确度优于主流算法.