摘要:AIS数据是指通过AIS系统获取的船舶运动轨迹信息, 对其进行挖掘可以获得船舶的运动模式、航行路线、停靠地点等信息. 但其在采集过程中产生的离群点会对聚类等任务造成负面影响, 因此对AIS数据挖掘之前需要进行离群点检测. 然而, 当AIS轨迹数据中存在大量离群点时, 会导致大多数离群点检测算法的准确率显著下降. 为了解决这个问题, 本文提出了一种基于中心移动的轨迹离群点检测算法(center shift outlier detection, CSOD). 通过迫使数据点向其K近邻集合的中心移动, 使每个数据点更加接近典型数据, 从而有效地消除了离群点对聚类的影响. 为了验证本文算法的有效性, 使用浙江海域AIS渔船轨迹数据集, 将本文提出的CSOD算法与一些经典的离群点检测算法进行了对比实验. 实验结果表明, CSOD算法整体上性能更加优越.