Robust-InTemp: 基于对抗扰动和局部信息增强的进阀温度预测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金面上项目(61972197);江苏省自然科学基金面上项目(BK20201292)


Robust-InTemp: Inlet Valve Temperature Prediction Based on Adversarial Perturbation and Local Information Enhancement
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    预测进阀温度的变化趋势对阀冷系统的运行状态有重要参考价值. 针对传统方法存在数据收集时间跨度大和传感器存在误差等问题, 本文提出了一种基于对抗扰动和局部信息增强的进阀温度预测模型Robust-InTemp. 具体来说, Robust-InTemp通过对原始数据添加基于规则的高斯噪声, 并使用基于梯度的对抗训练方法(projected gradient descent, PGD), 增强了模型的泛化能力和抵抗噪声干扰的鲁棒性. 同时, 引入相对位置编码、一维卷积以及门控线性单元(gated linear unit, GLU), 以增强模型对局部特征的学习能力, 从而提高预测准确性. 实验结果表明, 与多种基准模型相比, Robust-InTemp在预测性能和抗干扰能力方面均有明显优势, 进一步的消融实验也验证了模型中各个组件的有效性.

    Abstract:

    Predicting the trend of inlet valve temperature changes provides significant references for the operating status of valve cooling systems. Since the traditional methods have problems such as a large time span of data collection and sensor deviation, this study proposes a Robust-InTemp prediction model for inlet valve temperature based on adversarial perturbation and local information enhancement. Specifically, Robust-InTemp enhances the model’s generalization ability and noise resistance robustness by adding rule-based Gaussian noise to the original data and employing projected gradient descent (PGD) for adversarial training. Meanwhile, relative positional encoding, one-dimensional convolution, and gated linear units (GLUs) are introduced to enhance the model’s ability to learn local features, thus improving prediction accuracy. Experimental results show that compared to various benchmark models, Robust-InTemp has clear advantages in predictive performance and anti-interference ability. Additionally, further ablation experiments validate the effectiveness of each component in the model.

    参考文献
    相似文献
    引证文献
引用本文

吴皓,周宇,张硕桦,杨光. Robust-InTemp: 基于对抗扰动和局部信息增强的进阀温度预测.计算机系统应用,2023,32(12):84-94

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-06-06
  • 最后修改日期:2023-07-03
  • 录用日期:
  • 在线发布日期: 2023-10-20
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号