基于自适应权重和莱维飞行的改进海鸥优化算法
作者:

Improved Seagull Optimization Algorithm Based on Adaptive Weight and Levy Flight
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在齿轮系设计问题中, 传统算法存在计算复杂与精度低等缺点, 海鸥优化算法(SOA)得益于其算法原理简单、通用性强、参数少等特性, 现多用于工程设计问题. 然而, 标准海鸥优化算法易出现寻优精度低、搜索速度慢等问题, 本文提出一种混合策略改进的海鸥优化算法(WLSOA). 首先, 利用非线性递减策略增强海鸥优化算法的探索开发能力, 提高寻优精度. 其次, 在海鸥攻击阶段引入自适应权重平衡全局与局部的搜索能力和加入莱维飞行步长对当前最优解进行扰动, 提高算法跳出局部最优值的能力. 然后分别使用WLSOA、黄金正弦算法、鲸鱼优化算法、粒子群优化算法、传统海鸥优化算法及最新提出的改进海鸥优化算法, 通过在9个经典的测试函数上进行仿真实验来探究WLSOA的性能. 结果表明, WLSOA比其他6种算法寻优精度更高, 收敛速度更快. 最后, 在齿轮系设计问题上, 通过与其他13种常见的群智能算法的比较表明, WLSOA的求解性能优于其他算法.

    Abstract:

    In gear train design, traditional algorithms exhibit drawbacks such as computational complexity and low accuracy. The seagull optimization algorithm (SOA) benefits from its simple algorithmic principle, strong universality, and few parameters, and is now commonly used in engineering design problems. However, the standard SOA is prone to problems such as low optimization accuracy and slow search speed. This study proposes a hybrid strategy improved seagull optimization algorithm (WLSOA). Firstly, it utilizes a nonlinear descent strategy to enhance the exploration and development capabilities of the SOA and improve optimization accuracy. Secondly, the adaptive weight balancing of global and local search capabilities and the addition of Levy flight steps to perturb the current optimal solution are introduced to improve the ability of the algorithm to jump out of the local optimal value. The performance of WLSOA is then explored through simulation experiments on 9 classic test functions, using WLSOA, golden sine algorithm, whale optimization algorithm, particle swarm optimization algorithm, traditional seagull optimization algorithm, and the newly proposed improved seagull optimization algorithm. The results show that WLSOA has higher optimization accuracy and faster convergence speed than the other six algorithms. Finally, in gear train design, a comparison with 13 other common swarm intelligence algorithms reveals that WLSOA has a better solving ability than other algorithms.

    参考文献
    [1] Che YH, He DX. An enhanced seagull optimization algorithm for solving engineering optimization problems. Applied Intelligence, 2022, 52(11): 13043–13081. [doi: 10.1007/s10489-021-03155-y
    [2] Meng XD, Li HC, Chen AS. Multi-strategy self-learning particle swarm optimization algorithm based on reinforcement learning. Mathematical Biosciences and Engineering, 2023, 20(5): 8498–8530. [doi: 10.3934/mbe.2023373
    [3] Feng C, Zhang ZH, Xie LY, et al. Research on emergency supplies distribution based on improved simulated annealing algorithm. Academic Journal of Computing & Information Science, 2022, 5(10): 6–13
    [4] Jiang LQ, Fu ZJ. Privacy-preserving genetic algorithm outsourcing in cloud computing. Journal of Cyber Security, 2020, 2(1): 49–61. [doi: 10.32604/jcs.2020.09308
    [5] Dhiman G, Kumar V. Seagull optimization algorithm: Theory and its applications for large-scale industrial engineering problems. Knowledge-based Systems. 2019(165): 169–196.
    [6] Fonooni B, Jevtic A, Hellström T, et al. Applying ant colony optimization algorithms for high-level behavior learning and reproduction from demonstrations. Robotics and Autonomous Systems, 2015, 65: 24–39. [doi: 10.1016/j.robot.2014.12.001
    [7] Ehsaeyan E, Zolghadrasli A. FOA: Fireworks optimization algorithm. Multimedia Tools and Applications, 2022, 81(23): 33151–33170. [doi: 10.1007/s11042-022-13093-7
    [8] Liu XY, Li GQ, Shao P. A multi-mechanism seagull optimization algorithm incorporating generalized opposition-based nonlinear boundary processing. Mathematics, 2022, 10(18): 3295. [doi: 10.3390/math10183295
    [9] Xian SD, Chen KY, Cheng Y. Improved seagull optimization algorithm of partition and XGBoost of prediction for fuzzy time series forecasting of COVID-19 daily confirmed. Advances in Engineering Software, 2022, 173: 103212. [doi: 10.1016/j.advengsoft.2022.103212
    [10] Wang YL, Wang WL, Ahmad I, et al. Multi-objective quantum-inspired seagull optimization algorithm. Electronics, 2022, 11(12): 1834. [doi: 10.3390/electronics11121834
    [11] Long W, Jiao JJ, Liang XM, et al. Parameters estimation of photovoltaic models using a novel hybrid seagull optimization algorithm. Energy, 2022, 249: 123760. [doi: 10.1016/j.energy.2022.123760
    [12] Gao P, Ding HQ, Xu R. Whale optimization algorithm based on skew tent chaotic map and nonlinear strategy. Academic Journal of Computing & Information Science, 2021, 4(5): 91–97
    [13] Mo GL, Tan CZ, Zhang WG, et al. Dynamic spatiotemporal correlation coefficient based on adaptive weight. Financial Innovation, 2023, 9(1): 14. [doi: 10.1186/s40854-022-00437-3
    [14] Wu L, Wu JW, Wang TB. Enhancing grasshopper optimization algorithm (GOA) with levy flight for engineering applications. Scientific Reports, 2023, 13(1): 124. [doi: 10.1038/s41598-022-27144-4
    [15] Long W, Jiao JJ, Xu M, et al. Lens-imaging learning Harris hawks optimizer for global optimization and its application to feature selection. Expert Systems with Applications, 2022, 202: 117255. [doi: 10.1016/j.eswa.2022.117255
    [16] Long W, Xu M, Jiao JJ, et al. A velocity-based butterfly optimization algorithm for high-dimensional optimization and feature selection. Expert Systems with Applications, 2022, 201: 117217. [doi: 10.1016/j.eswa.2022.117217
    [17] Zhang SQ, Zhang NJ, Zhang ZQ, et al. Electric power load forecasting method based on a support vector machine optimized by the improved seagull optimization algorithm. Energies, 2022, 15(23): 9197. [doi: 10.3390/en15239197
    [18] Chen J, Chen X, Fu ZF. Improvement of the seagull optimization algorithm and its application in path planning. Journal of Physics: Conference Series, 2022, 2216: 012076. [doi: 10.1088/1742-6596/2216/1/012076
    [19] Yue YG, You HR, Wang SX, et al. Improved whale optimization algorithm and its application in heterogeneous wireless sensor networks. International Journal of Distributed Sensor Networks, 2021, 17(5): 155014772110181.
    [20] Chakraborty R, Sushil R, Garg ML. Hyper-spectral image segmentation using an improved PSO aided with multilevel fuzzy entropy. Multimedia Tools and Applications, 2019, 78(23): 34027–34063. [doi: 10.1007/s11042-019-08114-x
    [21] Liu QX, Li N, Jia HM, et al. A hybrid arithmetic optimization and golden sine algorithm for solving industrial engineering design problems. Mathematics, 2022, 10(9): 1567. [doi: 10.3390/math10091567
    [22] Yuan PL, Zhang TH, Yao LG, et al. A hybrid golden jackal optimization and golden sine algorithm with dynamic lens-imaging learning for global optimization problems. Applied Sciences, 2022, 12(19): 9709. [doi: 10.3390/app12199709
    [23] Li J, Zhang WJ, Hu YT, et al. RJA-star algorithm for UAV path planning based on improved R5DOS model. Applied Sciences, 2023, 13(2): 1105. [doi: 10.3390/app13021105
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

奚金明,郑荣艳.基于自适应权重和莱维飞行的改进海鸥优化算法.计算机系统应用,2023,32(12):171-179

复制
分享
文章指标
  • 点击次数:643
  • 下载次数: 2439
  • HTML阅读次数: 1114
  • 引用次数: 0
历史
  • 收稿日期:2023-05-30
  • 最后修改日期:2023-07-03
  • 在线发布日期: 2023-09-21
文章二维码
您是第11205190位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号