基于改进YOLOv5s算法的交通信号灯检测
作者:
基金项目:

国家自然科学基金(41875184,41975183)


Traffic Light Detection Based on Improved YOLOv5s Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对交通信号灯检测中目标尺度小、检测精度低的问题, 提出一种改进YOLOv5s的交通信号灯检测算法. 首先, 构建一种特征金字塔模块RSN-BiFPN, 充分融合不同尺度的交通信号灯特征, 以减少目标漏检和误检. 其次, 引入新的特征融合层和预测头, 提高网络对小目标的感知性能, 增强检测准确性; 最后, 采用EIoU函数优化损失, 加快网络收敛速度. 通过在S2TLD公开数据集上进行的大量的实验结果表明, 本文所提方法相较于基础网络, 精确率提升4.1%, 达96.1%; 召回率提升3%, 达95.9%; 平均精确度提升1.9%, 达96.5%. 同时, 改进后的算法实现了更快的检测速度, 达每秒22.7帧, 本文方法有效实现交通信号灯快速、准确地检测, 可广泛应用于交通道路中信号灯分析相关研究.

    Abstract:

    Aiming at the small target scale and low detection accuracy in traffic signal detection, this study proposes a traffic signal detection algorithm based on improved YOLOv5s. Firstly, a feature pyramid module RSN-BiFPN is constructed to fully integrate traffic signal features of different scales to reduce target missed detection and false detection. Secondly, a new feature fusion layer and prediction head are introduced to improve the perception performance of the network for small objects and enhance detection accuracy. Finally, the EIoU function is adopted to optimize the loss and accelerate network convergence. Experiments conducted on the public dataset S2TLD show that compared with the basic network, the precision rate of the proposed method is increased by 4.1% at 96.1%, the recall rate is 95.9% with an increase of 3%, and the average precision is increased by 1.9%, reaching 96.5%. Meanwhile, the improved algorithm achieves a faster detection speed of 22.7 frames per second. The proposed method can realize rapid and accurate detection of traffic lights and can be widely employed in the research on analyzing traffic lights.

    参考文献
    [1] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. [doi: 10.1109/TPAMI.2016.2577031
    [2] Zhang HY, Wang Y, Dayoub F, et al. VarifocalNet: An IoU-aware dense object detector. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 8514–8523.
    [3] Zhou XY, Koltun V, Krähenbühl P. Probabilistic two-stage detection. arXiv:2103.07461, 2021.
    [4] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu: IEEE, 2017. 7263–7271.
    [5] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [6] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [7] Wang CY, Bochkovskiy A, Liao HYM. Scaled-YOLOv4: Scaling cross stage partial network. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville: IEEE, 2021. 13029–13038.
    [8] Ge Z, Liu ST, Wang F, et al. YOLOX: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    [9] Tian Z, Shen CH, Chen H, et al. FCOS: Fully convolutional one-stage object detection. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 9627–9636.
    [10] Zhu XZ, Su WJ, Lu LW, et al. Deformable DETR: Deformable Transformers for end-to-end object detection. Proceedings of the 9th International Conference on Learning Representations. OpenReview.net, 2021.
    [11] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [12] Wang JF, Chen Y, Dong ZK, et al. Improved YOLOv5 network for real-time multi-scale traffic sign detection. Neural Computing and Applications, 2023, 35(10): 7853–7865. [doi: 10.1007/s00521-022-08077-5
    [13] Chen Y, Wang JF, Dong ZK, et al. An attention based YOLOv5 network for small traffic sign recognition. Proceedings of the 31st IEEE International Symposium on Industrial Electronics. Anchorage: IEEE, 2022. 1158–1164.
    [14] Wang QF, Sun X, Yi KX, et al. Real time traffic sign recognition algorithm based on SG-YOLO. Proceedings of the 21st Asia Simulation Conference. Changsha: Springer, 2022. 86–99.
    [15] Chu JQ, Zhang C, Yan MM, et al. TRD-YOLO: A real-time, high-performance small traffic sign detection algorithm. Sensors, 2023, 23(8): 3871. [doi: 10.3390/s23083871
    [16] Bi ZQ, Xu FQ, Shan MJ, et al. YOLO-RFB: An improved traffic sign detection model. Proceedings of the 12th International Conference on Mobile Computing, Applications, and Services. Springer, 2021. 3–18.
    [17] Liu S, Qi L, Qin HF, et al. Path aggregation network for instance segmentation. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8759–8768.
    [18] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized intersection over union: A metric and a loss for bounding box regression. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 658–666.
    [19] Zheng ZH, Wang P, Liu W, et al. Distance-IoU loss: Faster and better learning for bounding box regression. Proceedings of the 34th AAAI Conference on Artificial Intelligence. New York: AAAI Press, 2020. 12993–13000.
    [20] Gevorgyan Z. SIoU loss: More powerful learning for bounding box regression. arXiv:2205.12740, 2022.
    [21] Zhang YF, Ren WQ, Zhang Z, et al. Focal and efficient IOU loss for accurate bounding box regression. Neurocomputing, 2022, 506: 146–157. [doi: 10.1016/j.neucom.2022.07.042
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王军,葛宝康,程勇.基于改进YOLOv5s算法的交通信号灯检测.计算机系统应用,2023,32(12):243-252

复制
分享
文章指标
  • 点击次数:573
  • 下载次数: 1728
  • HTML阅读次数: 919
  • 引用次数: 0
历史
  • 收稿日期:2023-05-21
  • 最后修改日期:2023-06-26
  • 在线发布日期: 2023-09-19
文章二维码
您是第11419004位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号