摘要:针对人体姿态估计算法可实施性低以及基于姿态估计的跳绳计数精度不高的问题, 提出了一种基于轻量级人体姿态估计网络的跳绳计数算法. 该算法首先输入跳绳视频, 接着利用帧间差分法提取关键帧图像并送入人体姿态估计网络进行关节点检测; 同时为了解决轻量级网络检测精度不高的问题, 提出优化的LitePose检测模型, 采用自适应感知解码方法对模型的解码部分进行优化从而减少量化误差; 然后采用卡尔曼滤波对坐标数据进行平滑降噪, 以减小坐标抖动误差; 最终通过关键点坐标变化判断跳绳计数. 实验结果表明, 在相同图像分辨率和环境配置下, 本文提出的算法使用优化的LitePose-S网络模型, 不仅未增加模型参数量和运算复杂度, 同时网络检测精度提高了0.7%, 且优于其他对比网络, 而且本算法在跳绳计数时的平均误差率最低可达1.00%, 可以利用人体姿态估计的结果有效地判断人体起跳和落地情况, 最终得出计数结果.