摘要:较传统方案而言, 目前基于深度学习的图像补全方法取得了更优的修复效果. 但大都忽视了建立像素的长距离依赖, 深度学习模型处理大面积不规则缺失时效果不佳、生成图像整体契合度不足. 另一方面, 很多通过融合多尺度感受野来保留更多细节信息的补全算法, 由于无法动态的调节感受野, 而受到输入尺度与补全目标尺度变化带来的影响, 最终导致生成结果产生明显的伪影误差. 针对这类问题, 本文提出一种基于快速傅里叶变换和选择性卷积核网络的补全算法, 在实现像素长距离依赖的同时保证模型的高效率运行. 此外, 本算法还改进了选择性卷积核网络, 可按照各卷积核特征的贡献, 自适应调整相应权重, 从而为模型提供精确的局部性信息补充, 最终生成全局融合度更高、局部细节更丰富的补全结果. 在Celeb-A和Place2数据集的实验表明, 本文方法不仅在PSNR和SSIM指标上超越了现有的前沿图像补全方法, 且处理受遮挡率为80%以上的图像时具有明显优势, 能够生成更真实地结果.