基于快速傅里叶变换和选择性卷积核网络的图像补全
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

四川省科技厅重点研发项目(2023YFG0305, 2023YFG0124)


Image Completion Based on Fast Fourier Transform and Selective Convolutional Kernel Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    较传统方案而言, 目前基于深度学习的图像补全方法取得了更优的修复效果. 但大都忽视了建立像素的长距离依赖, 深度学习模型处理大面积不规则缺失时效果不佳、生成图像整体契合度不足. 另一方面, 很多通过融合多尺度感受野来保留更多细节信息的补全算法, 由于无法动态的调节感受野, 而受到输入尺度与补全目标尺度变化带来的影响, 最终导致生成结果产生明显的伪影误差. 针对这类问题, 本文提出一种基于快速傅里叶变换和选择性卷积核网络的补全算法, 在实现像素长距离依赖的同时保证模型的高效率运行. 此外, 本算法还改进了选择性卷积核网络, 可按照各卷积核特征的贡献, 自适应调整相应权重, 从而为模型提供精确的局部性信息补充, 最终生成全局融合度更高、局部细节更丰富的补全结果. 在Celeb-A和Place2数据集的实验表明, 本文方法不仅在PSNRSSIM指标上超越了现有的前沿图像补全方法, 且处理受遮挡率为80%以上的图像时具有明显优势, 能够生成更真实地结果.

    Abstract:

    Compared with traditional methods, current deep learning-based image completion methods have achieved better repair results. However, most of them overlook the establishment of pixel long-distance dependence, and deep learning models have poor performance in dealing with large irregular missing areas, resulting in insufficient overall fit of the generated image. On the other hand, many completion algorithms that retain more detailed information by fusing multi-scale receptive fields are affected by changes in the input scale and the completion target scale as they cannot adjust the receptive field dynamically, resulting in significant artifact errors in the generated results. In response to such problems, this study proposes a completion algorithm based on fast Fourier transform and selective convolutional kernel network, which ensures the efficient operation of the model while achieving pixel long-distance dependence. In addition, this algorithm also improves the selective convolutional kernel network, which can adaptively adjust the corresponding weights according to the contribution of each convolutional kernel feature. It provides accurate local information supplementation for the model, ultimately generating completion results with higher global fusion and richer local details. The experiments on the Celeb-A and Place2 datasets show that the proposed method not only surpasses existing cutting-edge image completion methods in PSNR and SSIM metrics but also has significant advantages in processing images with occlusion rates of over 80%, which can generate more realistic results.

    参考文献
    相似文献
    引证文献
引用本文

吴颖超,胡靖.基于快速傅里叶变换和选择性卷积核网络的图像补全.计算机系统应用,2023,32(11):149-158

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-05-01
  • 最后修改日期:2023-05-29
  • 录用日期:
  • 在线发布日期: 2023-08-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号