基于YOLOv5改进的轻量化目标检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

广东省基础与应用基础研究基金(2023A1515010168, 2019A1515010830); 广东省普通高校重点专项(2022ZDZX1018); 茂名市科技计划(2022S043); 广东石油化工学院博士启动项目(2019BS001)


Improved Lightweight Target Detection Based on YOLOv5
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对移动端目标检测算法需要模型参数量与计算量更少、推理速度更快和检测效果更好以及目标检测算法对于小目标误检、漏检及特征提取能力不足等问题, 提出一种基于YOLOv5改进的轻量化目标检测算法. 该算法使用轻量级网络MobileNetV2作为目标检测算法的骨干网络降低模型的参数量与计算量, 通过使用深度可分离卷积结合大卷积核的思想降低网络的计算量与参数量, 并提升了小目标的检测精度. 使用GhostConv来替换部分普通卷积, 进一步降低参数量与计算量. 本文算法在VOC竞赛数据集, COCO竞赛数据集两份数据集上均进行了多次对比实验, 结果表明本文算法相比于其他模型参数量更小、计算量更小、推理速度更快以及检测精度更高.

    Abstract:

    Mobile target detection algorithms require fewer model parameters, less computation, faster reasoning speed, and better detection effects. The target detection algorithms are prone to false detection of small targets and missing detection and have insufficient ability for feature extraction. To this end, this study proposes a lightweight small target detection algorithm based on YOLOv5. In this algorithm, the lightweight network MobileNetV2 is used as the backbone network of the target detection algorithm to reduce the number of parameters and calculation amount of the model. The deep separable convolution combined with a large convolution kernel is applied to decline the number of parameters and calculation amount, and improve the detection accuracy of small targets. GhostConv is adopted to replace part of common convolution to further decrease the number of parameters and computation amount. Multiple comparison experiments are carried out on VOC competition data sets and COCO competition data sets. The results show that compared with other models, the proposed algorithm has fewer parameters, less computation, faster reasoning speed, and higher detection accuracy.

    参考文献
    相似文献
    引证文献
引用本文

管嘉程,任红卫,周宋佳.基于YOLOv5改进的轻量化目标检测.计算机系统应用,2023,32(9):132-142

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-30
  • 最后修改日期:2023-05-11
  • 录用日期:
  • 在线发布日期: 2023-08-29
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号