摘要:在地震、台风、洪水、泥石流等造成严重破坏的灾区, 无人机(unmanned aerial vehicle, UAV)可以作为空中边缘服务器为地面移动终端提供服务, 由于单无人机有限的计算和存储能力, 难以实时满足复杂的计算密集型任务. 本文首先研究了一个多无人机辅助移动边缘计算模型, 并构建了数学模型; 然后建立部分可观察马尔可夫决策过程, 提出了基于复合优先经验回放采样方法的MADDPG算法(composite priority multi-agent deep deterministic policy gradient, CoP-MADDPG)对无人机的时延能耗以及飞行轨迹进行联合优化; 最后, 仿真实验结果表明, 本文所提出算法的总奖励收敛速度和收敛值均优于其他基准算法, 且可为90%左右的地面移动终端提供服务, 证明了本文算法的有效性与实用性.