摘要:针对频谱图对于音乐特征挖掘较弱、深度学习分类模型复杂且训练时间长的问题, 设计了一种基于频谱增强和卷积宽度学习(CNNBLS)的音乐流派分类模型. 该模型首先通过SpecAugment中随机屏蔽部分频率信道的方法增强梅尔频谱图, 再将切割后的梅尔频谱图作为CNNBLS的输入, 同时将指数线性单元函数(ELU)融合进CNNBLS的卷积层, 以增强其分类精度. 相较于其他机器学习网络框架, CNNBLS能用少量的训练时间获得较高的分类精度. 此外, CNNBLS可以对增量数据进行快速学习. 实验结果表明: 无增量模型CNNBLS在训练400首音乐数据可获得90.06%的分类准确率, 增量模型Incremental-CNNBLS在增加400首训练数据后可达91.53%的分类准确率.