摘要:正未标记学习仅使用无标签样本和正样本训练一个二分类器, 而生成式对抗网络(generative adversarial networks, GAN)中通过对抗性训练得到一个图像生成器. 为将GAN的对抗训练方法迁移到正未标记学习中以提升正未标记学习的效果, 可将GAN中的生成器替换为分类器C, 在无标签数据集中挑选样本以欺骗判别器D, 对C与D进行迭代优化. 本文提出基于以Jensen-Shannon散度(JS散度)为目标函数的JS-PAN模型. 最后, 结合数据分布特点及现状需求, 说明了PAN模型在医疗诊断图像二分类应用的合理性及高性能. 在MNIST, CIFAR-10数据集上的实验结果显示: KL-PAN模型与同类正未标记学习模型对比有更高的精确度(ACC)及F1-score; 对称化改进后, JS-PAN模型在两个指标上均有所提升, 因此JS-PAN模型的提出更具有合理性. 在Med-MNIST的3个子图像数据集上的实验显示: KL-PAN模型与4个benchmark有监督模型有几乎相同的ACC, JS-PAN也有更高表现. 因此, 综合PAN模型的出色分类效果及医疗诊断数据的分布特征, PAN作为半监督学习方法可获得更快、更好的效果, 在医学图像的二分类的任务上具有更高的性能.