基于生成对抗网络的图像修复算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Image Inpainting Algorithm Based on Generative Adversarial Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为解决当前基于生成对抗网络的深度学习网络模型在面对较复杂的特征时存在伪影、纹理细节退化等现象, 造成视觉上的欠缺问题, 提出了连贯语义注意力机制与生成对抗网络相结合的图像修复改进算法. 首先, 生成器使用两阶段修复方法, 用门控卷积替代生成对抗网络的普通卷积, 引入残差块解决梯度消失问题, 同时引入连贯语义注意力机制提升生成器对图像中重要信息和结构的关注度; 其次, 判别器使用马尔可夫判别器, 强化网络的判别效果, 将生成器输出结果进行反卷积操作得到最终修复后的图片. 通过修复结果以及图像质量评价指标与基线算法进行对比, 实验结果表明, 该算法对缺失部分进行了更好地预测, 修复效果有了更好的提升.

    Abstract:

    The current depth learning network models based on generative adversarial networks encounter artifacts, texture detail degradation, and other phenomena when facing more complex features, which leads to a visual deficiency. In order to solve these problems, an improved image inpainting algorithm combining a generative adversarial network with a coherent semantic attention mechanism is proposed. First of all, the generator adopts a two-stage inpainting method, uses gated convolution to replace the ordinary convolution of the generative adversarial network, and introduces residual blocks to solve the gradient vanishing problem and a coherent semantic attention mechanism to enhance the generator's attention to the important information and structure in the image. Secondly, Markov discriminator is adopted to enhance the network's discrimination effect, and the output results of the generator are processed by deconvolution to get the final repaired image. By comparing the inpainting results and image quality evaluation indicators with the baseline algorithm, the experimental results show that the algorithm can better predict the missing parts and improve the inpainting effect.

    参考文献
    相似文献
    引证文献
引用本文

黄健,韩俊楠.基于生成对抗网络的图像修复算法.计算机系统应用,2023,32(10):215-221

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-21
  • 最后修改日期:2023-04-20
  • 录用日期:
  • 在线发布日期: 2023-08-22
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号