摘要:社区发现与链路预测任务是网络数据研究中的热点问题, 兼顾网络传递性与区块结构有助于捕捉个体之间的有效关联、探测数据中蕴含的内在规律, 帮助研究者挖掘更多数据价值进而做出决策. 当前的算法与模型多侧重于网络传递性或区块结构单一层面的分析, 且依赖一定的假设条件. 本文提出网络嵌入随机块模型(NE-SBM)用于社区发现与链路预测. 搭建贝叶斯框架完成模型参数的正则化, 利用Metropolis Hasting-Gibbs算法获得节点嵌入表示的隐位置与社区隶属关系, 基于多维尺度变换算法解决隐位置可识别性问题. 本方法可解决传统启发式算法中过分依赖判断准则或评价函数的问题, 对各类型的数据都具有更好的适应性. 人工数据及真实数据的实验结果进一步验证了该方法在社区发现与链路预测中有更优的表现.