摘要:基于热力图的方法是当前医学影像标志点定位算法中的主流方法, 然而, 现有方法几乎都使用预定义的热力图作为标签, 不能很好地表示真实的标志点位置分布, 从而限制了模型的性能. 为此, 本文提出基于不确定性估计的医学影像标志点定位算法, 同时预测标志点位置及其分布. 模型利用多分支空洞卷积提取多尺度的上下文信息, 同时使用自注意力机制强化重要特征, 从而在预测分布的同时提高算法的定位能力. 在公开数据集上的结果表明, 本文提出的算法整体上提升了标志点定位的性能, 在大部分指标上优于现有算法, 并且其预测出的标志点分布与真实标注下的标志点分布相符.