基于不确定性估计的医学影像标志点定位
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

上海市市级科技重大专项(2017SHZDZX01)


Landmark Localization in Medical Images Based on Uncertainty Estimation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于热力图的方法是当前医学影像标志点定位算法中的主流方法, 然而, 现有方法几乎都使用预定义的热力图作为标签, 不能很好地表示真实的标志点位置分布, 从而限制了模型的性能. 为此, 本文提出基于不确定性估计的医学影像标志点定位算法, 同时预测标志点位置及其分布. 模型利用多分支空洞卷积提取多尺度的上下文信息, 同时使用自注意力机制强化重要特征, 从而在预测分布的同时提高算法的定位能力. 在公开数据集上的结果表明, 本文提出的算法整体上提升了标志点定位的性能, 在大部分指标上优于现有算法, 并且其预测出的标志点分布与真实标注下的标志点分布相符.

    Abstract:

    Heatmap-based methods are mainstream for landmark localization in medical images. However, current heatmap-based methods almost exclusively employ predetermined heatmaps as labels, which cannot fully represent the real location distributions of landmarks to limit performance. Therefore, this study proposes a landmark localization algorithm in medical images based on uncertainty estimation to simultaneously predict the landmarks and their location distributions. The model adopts multi-branch dilated convolution to extract multi-scale context information and employs a self-attention mechanism to enhance important features, thus improving the landmark detection ability while predicting the distributions. Experiments on public datasets show that the proposed method improves the overall landmark detection performance and performs better on most metrics. Additionally, the predicted distributions are consistent with the real annotation distributions.

    参考文献
    相似文献
    引证文献
引用本文

叶子杨,余海洋.基于不确定性估计的医学影像标志点定位.计算机系统应用,2023,32(10):1-9

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-19
  • 最后修改日期:2023-04-20
  • 录用日期:
  • 在线发布日期: 2023-07-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号