摘要:视神经炎(optic neuritis)是一种眼部神经疾病, 会造成儿童和成人的急性视神经损伤, 严重时会有致盲的风险. 因此, 视神经炎早期发现和诊断, 对患者的恢复有着巨大的帮助. 基于视神经炎视网膜图像病变特征不明显, 人工诊断分类困难且准确率不高等问题, 本文设计了一种改进的混合注意力机制CS-CBAM模块, 并将CS-CBAM模块融合到改进的AlexNet网络, 形成一个具有更深层次的AlexNet2_att视神经炎分类模型, 从而实现视神经炎图像的自动分类. 首先, 对数据集中的视网膜图像进行图像尺寸调整, 去除图像冗余信息, 直方图均衡化和数据增强等预处理操作; 然后, 在AlexNet网络的基础上, 引入批归一化层以提高训练速度, 之后, 在改进后的AlexNet网络中融入我们所提出的混合注意力机制CS-CBAM, 形成AlexNet2_att模型; 最后, 使用来自大连市第三人民医院的临床数据对本文模型进行性能评估, 实验结果表明, 该模型的分类准确率可达99.19%. 实验结果证明本文模型具有良好的实用性和鲁棒性, 有很高的实用价值, 可以辅助医生进行视神经炎分类与诊断.