基于AlexNet2_att模型的视神经炎分类
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省自然科学基金(2021-MS-272); 辽宁省教育厅项目(LJKQZ2021088)


Optic Neuritis Classification Based on AlexNet2_att Model
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    视神经炎(optic neuritis)是一种眼部神经疾病, 会造成儿童和成人的急性视神经损伤, 严重时会有致盲的风险. 因此, 视神经炎早期发现和诊断, 对患者的恢复有着巨大的帮助. 基于视神经炎视网膜图像病变特征不明显, 人工诊断分类困难且准确率不高等问题, 本文设计了一种改进的混合注意力机制CS-CBAM模块, 并将CS-CBAM模块融合到改进的AlexNet网络, 形成一个具有更深层次的AlexNet2_att视神经炎分类模型, 从而实现视神经炎图像的自动分类. 首先, 对数据集中的视网膜图像进行图像尺寸调整, 去除图像冗余信息, 直方图均衡化和数据增强等预处理操作; 然后, 在AlexNet网络的基础上, 引入批归一化层以提高训练速度, 之后, 在改进后的AlexNet网络中融入我们所提出的混合注意力机制CS-CBAM, 形成AlexNet2_att模型; 最后, 使用来自大连市第三人民医院的临床数据对本文模型进行性能评估, 实验结果表明, 该模型的分类准确率可达99.19%. 实验结果证明本文模型具有良好的实用性和鲁棒性, 有很高的实用价值, 可以辅助医生进行视神经炎分类与诊断.

    Abstract:

    Optic neuritis is an eye nerve disease that causes acute optic nerve injury in children and adults, and there is a risk of blindness in severe cases. Therefore, early detection and diagnosis of optic neuritis is of great help to the recovery of patients. Based on the fact that the characteristics of retinal image lesions of optic neuritis are not obvious and the classification of artificial diagnosis is difficult, with low accuracy, an improved hybrid attention mechanism CS-CBAM module is designed in this study, and it is integrated into the improved AlexNet network to form a deeper AlexNet2_att optic neuritis classification model, so as to realize the automatic classification of optic neuritis images. First, the retinal images in the dataset are preprocessed through image size adjustment, removal of image redundancy information, histogram equalization, and data enhancement. Then, based on the AlexNet network, the batch normalization layer is introduced to improve the training speed, and then the proposed hybrid attention mechanism CS-CBAM is integrated into the improved AlexNet network to form an AlexNet2_att model. Finally, the clinical data from the Third People’s Hospital of Dalian are used to evaluate the performance of the network, and the experimental results show that the classification accuracy of the model can reach 99.19%, which proves that the model has excellent practicability and robustness and high practical value, so it can assist doctors in the classification and diagnosis of optic neuritis.

    参考文献
    相似文献
    引证文献
引用本文

樊雨函,乔焕,方玲玲.基于AlexNet2_att模型的视神经炎分类.计算机系统应用,2023,32(9):115-124

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-03-01
  • 最后修改日期:2023-03-30
  • 录用日期:
  • 在线发布日期: 2023-07-17
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号