摘要:由于成像设备存在的缺陷, 容易引起成像色彩的偏移, 影响图像算法的下游任务, 因此需要采用颜色恒常性算法实现图像色彩的矫正, 保证图像颜色与人眼看到的色彩保持一致. 传统颜色恒常性算法的效果依赖于特定的光源环境, 为了提升算法的适用范围和使用效率, 提出了一种基于SqueezeNet框架的颜色恒常性计算模型, 通过卷积图像网络感知图像光源, 并引入了注意力机制和残差连接, 提升网络对图像的理解和计算性能. 网络同时预测输入图像各区域的光照颜色, 再通过设计3种不同池化方式汇聚, 输出图像的全局估计光源, 最后利用估计光源矫正图像. 实验结果表明, 提出的光源估计算法能够有效地估计图像光照颜色, 矫正图像色彩.