摘要:自动驾驶技术的快速发展, 导致对交通标志检测技术的要求日益提高. 为解决YOLOv7算法在识别小目标时误检、漏检等问题, 本文提出一种基于注意力机制的交通标志检测模型YOLOv7-PC. 首先通过K-means++聚类算法对交通标志数据集进行聚类, 获得适用于检测交通标志的锚框; 其次在YOLOv7主干特征提取网络中引入坐标注意力机制, 将交通标志的横向和纵向信息嵌入到通道中, 使生成的特征信息具有交通标志的坐标信息, 加强有效特征的提取; 最后在加强特征提取网络中引入空洞空间金字塔池化, 捕获交通标志多尺度上下文信息, 在保证交通标志小目标分辨率的同时, 进一步扩大卷积的感受野. 在中国交通标志检测数据集(CCTSDB)上的实验表明, 本文算法增强了识别小目标的能力, 相较于YOLOv7模型, 本文算法的mAP、召回率平均分别提高了5.22%、9.01%, 是一种有效的交通标志检测算法.