摘要:鉴于灰尘积聚是光伏组件功率损失的主要因素之一, 针对灰尘颗粒的特性及克服利用扫描电子显微镜成本昂贵问题, 提出了一种利用改进的ShuffleNetV2模型来识别光伏板上的灰尘. 以ShuffleNetV2网络模型为基础模型, 采用Mish激活函数, 将更好的特征信息深入神经网络; 然后运用混合深度卷积保证特征提取的丰富性; 最后利用坐标注意力机制模块替换ShuffleNetV2模型中基本单元右分支尾部的逐点卷积, 从而在提高精度的同时也减少了计算量. 实验结果表明, 所提改进的ShuffleNetV2模型与已有的经典模型相比, 准确度更高, 模型复杂度更低, 有效地证明了所给方案是可行的.