摘要:支持向量机(support vector machine, SVM)是一种基于结构风险最小化的机器学习方法, 能够有效解决分类问题. 但随着研究问题的复杂化, 现实的分类问题往往是多分类问题, 而SVM仅能用于处理二分类任务. 针对这个问题, 一对多策略的多生支持向量机(multiple birth support vector machine, MBSVM)能够以较低的复杂度实现多分类, 但缺点在于分类精度较低. 本文对MBSVM进行改进, 提出了一种新的SVM多分类算法: 基于超球(hypersphere)和自适应缩小步长果蝇优化算法(fruit fly optimization algorithm with adaptive step size reduction, ASSRFOA)的MBSVM, 简称HA-MBSVM. 通过拟合超球得到的信息, 先进行类别划分再构建分类器, 并引入约束距离调节因子来适当提高分类器的差异性, 同时采用ASSRFOA求解二次规划问题, HA-MBSVM可以更好地解决多分类问题. 我们采用6个数据集评估HA-MBSVM的性能, 实验结果表明HA-MBSVM的整体性能优于各对比算法.