摘要:多机器人协作导航目前广泛应用于搜索救援、物流等领域, 协作策略与目标导航是多机器人协作导航面临的主要挑战. 为提高多个移动机器人在未知环境下的协作导航能力, 本文提出了一种新的分层控制协作导航(hierarchical control cooperative navigation, HCCN) 策略, 利用高层目标决策层和低层目标导航层, 为每个机器人分配一个目标点, 并通过全局路径规划和局部路径规划算法, 引导智能体无碰撞地到达分配的目标点. 通过Gazebo平台进行实验验证, 结果表明, 文中所提方法能够有效解决协作导航过程中的稀疏奖励问题, 训练速度至少可提高16.6%, 在不同环境场景下具有更好的鲁棒性, 以期为进一步研究多机器人协作导航提供理论指导, 应用至更多的真实场景中.