改进YOLOv5s的自动驾驶汽车目标检测
作者:
基金项目:

国家自然科学基金(61961038)


Improved YOLOv5s for Autonomous Vehicle Target Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在自动驾驶领域, 由于道路背景复杂以及小目标信息缺失, 现有目标检测算法存在检测精度低的问题. 由于车载摄像头视角较为固定, 道路上的目标在图像空间中的分布具有一定的规律, 可以为自动驾驶汽车进行目标检测提供更为丰富的信息. 因此, 提出一种改进YOLOv5s的空间特征增强网络(SE-YOLOv5s). 在YOLOv5s的颈部网络中添加位置注意力模块(location attention module, LAM), 该模块能够根据道路目标在图像中的分布特征进行加权, 增强网络对目标类别位置分布的感知和定位能力. 设计一种小目标增强模块(small target enhancement module, STEM), 将浅层特征和深层特征进行融合, 可以获得更丰富的小目标语义信息和空间细节信息, 提高小目标检测效果. 实验结果表明, 改进模型对不同尺度目标检测精度均有所提高, APS提高2.8%, APM提高2.5%, APL提高2%.

    Abstract:

    In the field of automatic driving, existing target detection algorithms are haunted by low detection precision due to complicated road backgrounds and insufficient information about small targets. Since the onboard camera has fixed viewing angles, and targets on the road are somewhat regularly distributed in the image space, richer information can be provided to autonomous vehicles for target detection. Therefore, a spatial feature augmentation network (SE-YOLOv5s) to improve YOLOv5s is proposed. A location attention module (LAM) is added to the neck network of YOLOv5s, which can be weighted according to the distribution characteristics of road targets in the image and enhance the network’s perception and localization ability for the target category location distribution. A small target enhancement module (STEM) is designed to fuse shallow features and deep ones, so as to obtain richer semantic information and detailed space information about small targets, thereby improving the detection effect of small targets. The results of the experiment show that the improved model witnesses an increase in detection precision against targets of different scales, with APS increased by 2.8%, APM increased by 2.5%, and APL increased by 2%.

    参考文献
    [1] 章军辉, 陈大鹏, 李庆. 自动驾驶技术研究现状及发展趋势. 科学技术与工程, 2020, 20(9): 3394–3403. [doi: 10.3969/j.issn.1671-1815.2020.09.005
    [2] Dai XR. HybridNet: A fast vehicle detection system for autonomous driving. Signal Processing: Image Communication, 2019, 70: 79–88. [doi: 10.1016/j.image.2018.09.002
    [3] Choi S, Kim JT, Choo J. Cars can’t fly up in the sky: Improv-ing urban-scene segmentation via height-driven attention networks. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 9373–9383.
    [4] Yu F, Chen HF, Wang X, et al. BDD100K: A diverse driving dataset for heterogeneous multitask learning. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 2636–2645.
    [5] Carranza-García M, Lara-Benítez P, García-Gutiérrez J, et al. Enhancing object detection for autonomous driving by optimizing anchor generation and addressing class imbalance. Neurocomputing, 2021, 449: 229–244. [doi: 10.1016/j.neucom.2021.04.001
    [6] Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision. Santiago: IEEE, 2015. 1440–1448.
    [7] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [8] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
    [9] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 2980–2988.
    [10] Zou ZX, Chen KY, Shi ZW, et al. Object detection in 20 years: A survey. Proceedings of the IEEE, 2023, 111(3): 257–276. [doi: 10.1109/JPROC.2023.3238524
    [11] Cai YF, Luan TY, Gao HB, et al. YOLOv4-5D: An effective and efficient object detector for autonomous driving. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 4503613
    [12] Zhu XK, Lyu SC, Wang X, et al. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection on drone-captured scenarios. Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision Workshops. Montreal: IEEE, 2021. 2778–2788.
    [13] Chen SB, Lin W. Embedded system real-time vehicle detection based on improved YOLO network. Proceedings of the 3rd IEEE Advanced Information Management, Communicates, Electronic and Automation control Conference. Chongqing: IEEE, 2019. 1400–1403.
    [14] 刘革, 郑叶龙, 赵美蓉. 基于RetinaNet改进的车辆信息检测. 计算机应用, 2020, 40(3): 854–858
    [15] 李彦辰, 张小俊, 张明路, 等. 基于改进Efficientdet的自动驾驶场景目标检测. 计算机工程与应用, 2022, 58(6): 183–191. [doi: 10.3778/j.issn.1002-8331.2109-0190
    [16] Liu R, Lehman J, Molino P, et al. An intriguing failing of convolutional neural networks and the coordconv solution. Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018. 9628–9639.
    [17] Dai YM, Wu YQ, Zhou F, et al. Asymmetric contextual modulation for infrared small target detection. Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision. Waikoloa: IEEE, 2021. 949–958.
    [18] Cao Y, Xu JR, Lin S, et al. GCNet: Non-local networks meet squeeze-excitation networks and beyond. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop. Seoul: IEEE, 2019. 1971–1980.
    [19] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [20] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [21] Ge Z, Liu ST, Wang F, et al. YOLOX: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    [22] Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Proceedings of the 2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017. 618–626.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余以春,李明旭.改进YOLOv5s的自动驾驶汽车目标检测.计算机系统应用,2023,32(9):97-105

复制
分享
文章指标
  • 点击次数:936
  • 下载次数: 2072
  • HTML阅读次数: 1410
  • 引用次数: 0
历史
  • 收稿日期:2023-02-12
  • 最后修改日期:2023-03-08
  • 在线发布日期: 2023-07-14
文章二维码
您是第11326470位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号