改进NSGA-II算法的海上搜救调度方法
作者:
基金项目:

山东省自然科学基金重大基础研究项目 (ZR2021ZD12)


Maritime Search and Rescue Dispatching Method Based on Improved NSGA-II Algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [9]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对海上搜救资源调度决策困难、干扰多、实时性差、难以实现全局最优问题, 本文以黄渤海海域为例, 采用改进的非支配排序遗传 (NSGA-II)算法解决海上船舶搜救资源调度问题. 首先, 根据AIS以及北斗数据, 建立了海上搜救资源的多目标优化模型; 其次, 改进的NSGA-II算法采用基于正态分布交叉 (NDX)算子, 在扩大搜索范围的基础上, 避免陷入局部最优, 得到多目标问题完整的Pareto解集; 采用综合评价法 (TOPSIS)从Pareto解集中求得折衷解, 即最终设计的搜救调度方案; 最后, 在考虑船舶数量约束以及时间约束的条件下, 采用改进的NSGA-II算法分别与NSGA-II算法和贪婪算法进行对比, 并采用黄渤海海域船舶采集数据进行仿真. 结果表明该算法能够有效解决海上搜救资源调度优化问题.

    Abstract:

    To solve the problems of difficult decision-making, multiple interference factors, poor real-time performance and the realization of global optimization in maritime search and rescue (SAR) resource scheduling, this study employs an improved non-dominated sorting genetic (NSGA-II) algorithm by taking the Yellow Sea and the Bohai Sea as an example. Firstly, a multi-objective optimization model for maritime SAR resources is built based on AIS and BeiDou data. Secondly, the normal distribution crossover (NDX)-based operator is adopted by the improved NSGA-II algorithm to avoid falling into local optimum on the basis of expanding the search scope, and a complete Pareto solution set for the multi-objective problem is obtained. The comprehensive evaluation method (TOPSIS) is applied to obtain a compromise solution from the Pareto solution set, namely the optimal design of the search and rescue scheduling scheme. Finally, when the constraint factors such as the number of ships and time are considered, the improved NSGA-II algorithm is employed and compared with the NSGA-II and greedy algorithms. The simulations of the resource scheduling are carried out using the data collected from ships in the Yellow Sea and the Bohai Sea. The results show that the algorithm can effectively solve the problem of maritime SAR resource scheduling optimization.

    参考文献
    [1] 于安民. 海上捜寻船舶协同调度方法研究[硕士学位论文]. 大连: 大连海事大学, 2020.
    [2] 李苯帅. 基于最优搜寻理论的海上搜救方案规划方法研究[硕士学位论文]. 青岛: 山东科技大学, 2020.
    [3] 邢胜伟, 张英俊, 李元奎, 等. 海上搜寻力量选择优化模型. 大连海事大学学报, 2012, 38(2): 15–18. [doi: 10.16411/j.cnki.issn1006-7736.2012.02.026
    [4] Xiong WT, van Gelder PHAJM, Yang KW. A decision support method for design and operationalization of search and rescue in maritime emergency. Ocean Engineering, 2020, 207: 107399. [doi: 10.1016/j.oceaneng.2020.107399
    [5] De A, Choudhary A, Tiwari MK. Multiobjective approach for sustainable ship routing and scheduling with draft restrictions. IEEE Transactions on Engineering Management, 2019, 66(1): 35–51. [doi: 10.1109/TEM.2017.2766443
    [6] Yang MD, Chen YP, Lin YH, et al. Multiobjective optimization using nondominated sorting genetic algorithm-II for allocation of energy conservation and renewable energy facilities in a campus. Energy and Buildings, 2016, 122: 120–130. [doi: 10.1016/j.enbuild.2016.04.027
    [7] 钟佳淋, 吴亚辉, 邓苏, 等. 基于改进NSGAGIII的多目标联邦学习进化算法. 计算机科学, 2022: 1–10. http://kns.cnki.net/kcms/detail/50.1075.TP.20220831.1402.002.html. (2022-09-01)[2022-09-21].
    [8] 傅生辉, 李臻, 杜岳峰, 等. 基于改进NSGA-II算法的拖拉机传动系统匹配优化. 农业机械学报, 2018, 49(11): 349–357. [doi: 10.6041/j.issn.1000-1298.2018.11.042
    [9] 王琳, 柯琴, 李炎隆, 等. 组合权重TOPSIS模型评价黄土高原小流域淤地坝系风险. 应用力学学报, 2022, 39(4): 698–706
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

严梦迪,王海红.改进NSGA-II算法的海上搜救调度方法.计算机系统应用,2023,32(8):244-249

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-01-17
  • 最后修改日期:2023-02-23
  • 在线发布日期: 2023-05-22
文章二维码
您是第12435548位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号