基于目标和关键点检测的单目托盘定位
作者:
基金项目:

科技创新特区计划(20-163-14-LZ-001-004-01)


Pallet Positioning Based on Target and Key Points Detection with Monocular Vision
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    托盘的识别与定位是无人叉车中关键的问题之一. 当前托盘定位多采用目标检测的方法, 然而目标检测只能识别托盘在图像中的位置, 无法得到托盘的空间信息. 针对此问题, 本文提出了一种基于目标和关键点检测的单目托盘定位方法, 用于检测托盘并计算托盘当前的倾角和距离. 首先对托盘进行目标检测, 然后将检测的结果进行裁剪后输入到关键点检测网络中. 通过对托盘关键点的检测和托盘固有的几何外形特征, 设计边缘自适应调整, 得到高精度的托盘轮廓信息. 根据几何约束提出了基于轮廓点的托盘倾角与距离计算方法, 并采用RANSAC算法提升了计算结果的精度和稳定性, 解决了托盘的定位问题. 实验表明, 本文提出的算法在倾角计算上平均误差在5°以内, 水平距离计算上平均误差在110 mm以内, 能较好地定位托盘, 具有较高的实用价值.

    Abstract:

    Pallet recognition and positioning is one of the critical problems in unmanned forklift trucks. At present, target detection is mostly used for pallet positioning. However, target detection can only recognize the position of the pallet in the image and cannot obtain the spatial information of the pallet. To solve this problem, this study proposes a pallet positioning method based on target and key point detection with monocular vision, which is applied to detect the pallet and calculate the current dip angle and distance of the pallet. Firstly, target detection is carried out on the pallet. Then, the image will be cropped according to the detection result and input into the key points detection network. Through the detection of the key points and the inherent geometric features of the pallet, the edge adaptive adjustment is designed to obtain the high-precision profile information of the pallet. According to the geometric constraints, a method for calculating the dip angle and distance of the pallet based on contour points is proposed, and the RANSAC algorithm is adopted to improve the precision and stability of the calculation results, thus addressing the problem of pallet positioning. Experiments indicate that the average error of the proposed algorithm is less than 5° in the calculation of dip angle and less than 110 mm in the calculation of horizontal distance. It works well for pallet positioning and is of high practical value.

    参考文献
    [1] 中共中央国务院关于加快建设全国统一大市场的意见. 人民日报, 2022-04-11(001).
    [2] 赵俊宏, 吕恩利, 陆华忠, 等. 基于激光雷达的托盘位姿识别算法及验证. 仪器仪表学报, 2017, 38(10): 2469–2476. [doi: 10.3969/j.issn.0254-3087.2017.10.015
    [3] Mohamed IS, Capitanelli A, Mastrogiovanni F, et al. Detection, localisation and tracking of pallets using machine learning techniques and 2D range data. Neural Computing and Applications, 2020, 32(13): 8811–8828. [doi: 10.1007/s00521-019-04352-0
    [4] Bellomo N, Marcuzzi E, Baglivo L, et al. Pallet pose estimation with LIDAR and vision for autonomous forklifts. IFAC Proceedings Volumes, 2009, 42(4): 612–617. [doi: 10.3182/20090603-3-RU-2001.0540
    [5] Chen G, Peng R, Wang ZC, et al. Pallet recognition and localization method for vision guided forklift. Proceedings of the 8th International Conference on Wireless Communications, Networking and Mobile Computing. Shanghai: IEEE, 2012. 1–4.
    [6] Cui GZ, Lu LS, He ZD, et al. A robust autonomous mobile forklift pallet recognition. Proceedings of the 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010). Wuhan: IEEE, 2010. 286–290.
    [7] 武文汉. 基于视觉的仓储托盘检测方法研究[硕士学位论文]. 上海: 上海交通大学, 2018.
    [8] Xiao JH, Lu HM, Zhang LL, et al. Pallet recognition and localization using an RGB-D camera. International Journal of Advanced Robotic Systems, 2017, 14(6): 1729881417737799.
    [9] Mok C, Baek I, Cho YS, et al. Pallet recognition with multi-task learning for automated guided vehicles. Applied Sciences, 2021, 11(24): 11808. [doi: 10.3390/app112411808
    [10] 叶伟. 基于视觉的无人叉车导航和托盘定位方法研究与实现[硕士学位论文]. 合肥: 中国科学技术大学, 2021.
    [11] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [12] Rother C, Kolmogorov V, Blake A. “GrabCut”: Interactive foreground extraction using iterated graph cuts. ACM Transactions on Graphics, 2004, 23(3): 309–314. [doi: 10.1145/1015706.1015720
    [13] 朱丹平, 朱明, 周恒森. 基于改进CenterNet的托盘定位方法. 计算机系统应用, 2022, 31(10): 303–309. [doi: 10.15888/j.cnki.csa.008728
    [14] Zhou XY, Wang DQ, Krähenbühl P. Objects as points. arXiv:1904.07850, 2019.
    [15] Fischler MA, Bolles RC. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381–395. [doi: 10.1145/358669.358692
    [16] Jocher G, Stoken A, Borovec J, et al. Ultralytics/YOLOv5: V3.0. https://zenodo.org/record/3983579#.ZAG7Sh9By61. (2020-08-13).
    [17] Wu J, He ZS, Yan K, et al. Key points detection algorithm of object based on full convolution network. Proceedings of the 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE). Beijing: IEEE, 2020. 158–162.
    [18] Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston: IEEE, 2015. 3431–3440.
    [19] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [20] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149. [doi: 10.1109/TPAMI.2016.2577031
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周恒森,朱明.基于目标和关键点检测的单目托盘定位.计算机系统应用,2023,32(8):180-188

复制
分享
文章指标
  • 点击次数:562
  • 下载次数: 1790
  • HTML阅读次数: 977
  • 引用次数: 0
历史
  • 收稿日期:2023-01-06
  • 最后修改日期:2023-02-09
  • 在线发布日期: 2023-05-22
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号