摘要:给图片添加特定扰动可以生成对抗样本, 误导深度神经网络输出错误结果, 更加强力的攻击方法可以促进网络模型安全性和鲁棒性的研究. 攻击方法分为白盒攻击和黑盒攻击, 对抗样本的迁移性可以借已知模型生成结果来攻击其他黑盒模型. 基于直线积分梯度的攻击TAIG-S可以生成具有较强迁移性的样本, 但是在直线路径中会受噪声影响, 叠加与预测结果无关的像素梯度, 影响了攻击成功率. 所提出的Guided-TAIG方法引入引导积分梯度, 在每一段积分路径计算上采用自适应调整的方式, 纠正绝对值较低的部分像素值, 并且在一定区间内寻找下一步的起点, 规避了无意义的梯度噪声累积. 基于ImageNet数据集上的实验表明, Guided-TAIG在CNN和Transformer架构模型上的白盒攻击性能均优于FGSM、C&W、TAIG-S等方法, 并且制作的扰动更小, 黑盒模式下迁移攻击性能更强, 表明了所提方法的有效性.