摘要:针对多种农作物病虫害图像, 在自然环境下因虫害种类繁多, 小目标特征相似的技术问题, 导致检测困难难以达到令人满意的精度. 本文提出了一种自然背景下加强局部特征和全局特征信息融合的害虫检测识别模型YOLOv5-EB, 在公开的大规模害虫数据集IP102上进行实验, 结果表明该研究比YOLOv5模型精确度提高了5个百分点. 引入一维卷积替换CBAM中通道注意力的MLP操作, 优化了通道注意力经过全局处理后容易忽略通道内信息交互的问题; 其次使用6×6卷积替换Focus操作, 来增强提取害虫特征的能力. 实验结果表明, 对害虫进行检测时, YOLOv5-EB的平均精度值达到了87%, 与Faster R-CNN、EfficientDet、YOLOv3、YOLOv4、YOLOv5模型相比, 不仅有效提高了作物害虫图像的识别性能, 而且有效提高了检测速度. 研究表明, YOLOv5-EB算法满足对多种农作物病虫害目标检测的准确性和实时性要求.