摘要:基于无人机平台获取的地面影像有着较高的空间分辨率, 但提供丰富的细节信息的同时, 也为农作物分类带来很多“干扰”, 尤其是在利用深度模型进行作物识别时, 存在边缘信息提取不充分及相似纹理作物误分, 导致分类效果欠佳等问题. 因此, 通过多尺度注意力特征提取的思路构建模型, 有效提取边缘信息, 提高作物分类精度. 所提出的多尺度注意力模型 (multi-scale attention network, MSAT)通过多尺度块嵌入获取同一层级不同尺度的作物信息, 多尺度特征图被映射为多条序列独立地馈送到因子注意力模块中, 增强对农作物上下文信息的关注, 提高模型对地块边缘信息的提取, 因子注意力模块内置的卷积相对位置编码增强块内部局部信息的建模, 提高对相似纹理作物的区分能力, 最后通过融合局部特征与全局特征, 实现粗细双重信息的提取. 在水稻、甘蔗、玉米、香蕉和柑橘5种作物上的分类结果表明, MSAT模型的MIoU (mean intersection over union)和OA (overall accuracy)指标达0.816、98.10%, 验证了基于高分辨率图像的精细作物分类方法可行且设备成本低.