多尺度融合注意力机制的番茄叶病识别网络
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

海南省自然科学基金(822RC713)


Identification Network of Tomato Leaf Disease Based on Multi-scale Fusion Attention Mechanism
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对普通神经卷积网络对番茄叶病的识别精准度, 先提出一种新型的多尺度融合注意力机制的网络(MIPSANet), 在该网络中采用轻量级网络作为主要框架, 减少了网络的参数, 为了增加网络的深度和宽度, 加入了Inception结构, 用于提取数据的多尺度特征信息, 同时, 在这个过程中使用更加精细的双重注意力机制, 极化自注意力(polarized self-attention, PSA), 作为一个即插即用的模块, 将其嵌入整个模型中, 提高了重要特征点的表达能力, 同时PSA模块的轻量化也符合本模型的使用. 在卷积后加入全连接层, 进行分类. 使用提出的网络在Kaggle公开数据集tomato leaves dataset 上进行实验, 对其进行30批次的训练, 取得了91.05%的准确率, 与其他方法进行对照, 取得良好的效果. 试验结果表明该网络对番茄叶病的分类有很好的效果, 为分类网络的网络结构和参数配置方面提供一些参考价值.

    Abstract:

    To improve the identification accuracy of ordinary neural convolutional networks for tomato leaf disease, a new network based on the multi-scale fusion attention mechanism (MIPSANet) is proposed. The lightweight network is used as the main framework to reduce the network parameters in this network. To increase the depth and width of the network, the Inception structure is added to extract multi-scale feature information of data. Meanwhile, a more elaborate dual attention mechanism, polarized self-attention (PSA), is used in this process as a plug-and-play module to be embedded in the whole model, which improves the expressive power of important feature points. The lightweight PSA modules are also suitable for this model. A full connection layer is added after the convolution for classification. The proposed MIPSANet is applied to conduct experiments on Kaggle public dataset, tomato leaves dataset, with 30 batches of training, achieving an accuracy rate of 91.05%. The results show that this network is strikingly effective in the classification of tomato leaf diseases compared with other networks, which provides some reference value for the network structure and parameter configuration of the classification network.

    参考文献
    相似文献
    引证文献
引用本文

王斌,余本国.多尺度融合注意力机制的番茄叶病识别网络.计算机系统应用,2023,32(7):202-210

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-09
  • 最后修改日期:2023-01-17
  • 录用日期:
  • 在线发布日期: 2023-05-19
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号