基于异质图卷积注意网络的社交媒体账号分类
作者:

Social Media Account Classification Based on Heterogeneous Graph Convolutional Attention Network
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    由于社交媒体网络的复杂性, 单一性质的同质信息网络对社交媒体账号分类会造成信息丢失, 对分类结果产生不利影响. 针对这种问题, 本文提出基于异质图卷积注意网络的社交媒体账号分类方法(HGCANA). 首先构建社交媒体的异质信息网络, 然后提取异质信息网络的社交媒体特征, 引入注意力机制, 对社交媒体账号进行分类识别. 通过实验比较HGCANA方法与现有方法, 证明了本文提出的HGCANA方法能够更好地对社交网络媒体账号进行有效分类.

    Abstract:

    Due to the complexity of social media networks, the classification of social media accounts by mono-nature homogeneous information networks causes information loss and has a negative impact on the classification results. To solve this problem, this study proposes a social media account classification method based on heterogeneous graph convolutional attention networks (HGCANA). Specifically, a heterogeneous information network of social media is constructed, and the social media features of the network are extracted. After that, the attention mechanism is introduced to classify and identify social media accounts. The HGCANA method is compared with the existing methods through experiments, and it is proved that the HGCANA method registers better performance in the effective classification of social media accounts.

    参考文献
    [1] Gunawan AAS, Mulyono PR, Budiharto W. Indonesian question answering system for solving arithmetic word problems on intelligent humanoid robot. Procedia Computer Science, 2018, 135: 719–726. [doi: 10.1016/j.procs.2018.08.213
    [2] Li J, Xu WT, Wan WB, et al. Movie recommendation based on bridging movie feature and user interest. Journal of Computational Science, 2018, 26: 128–134. [doi: 10.1016/j.jocs.2018.03.009
    [3] Schreiner T, Rese A, Baier D. Multichannel personalization: Identifying consumer preferences for product recommendations in advertisements across different media channels. Journal of Retailing and Consumer Services, 2019, 48: 87–99. [doi: 10.1016/j.jretconser.2019.02.010
    [4] Han J. Mining heterogeneous information networks: The next frontier. Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing: ACM, 2012. 2–3.
    [5] Krishnamurthy B, Gill P, Arlitt M. A few chirps about Twitter. Proceedings of the 1st Workshop on Online Social Networks. Seattle: ACM, 2008. 19–24.
    [6] Wang AH. Don’t follow me: Spam detection in Twitter. Pro-ceedings of the 2010 International Conference on Security and Cryptography (SECRYPT). Athens: IEEE, 2010. 1–10.
    [7] McCord M, Chuah M. Spam detection on Twitter using traditional classifiers. Proceedings of the 8th International Conference on Autonomic and Trusted Computing. Banff: Springer, 2011. 175–186.
    [8] Rao D, Yarowsky D, Shreevats A, et al. Classifying latent user attributes in Twitter. Proceedings of the 2nd International Workshop on Search and Mining User-generated Contents. Toronto: ACM, 2010. 37–44.
    [9] Vicente M, Batista F, Carvalho JP. Twitter gender classification using user unstructured information. Proceedings of the 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). Istanbul: IEEE, 2015. 1–7.
    [10] Pennacchiotti M, Popescu AM. A machine learning approach to Twitter user classification. Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. Barcelona: AAAI, 2011. 281–288.
    [11] Campbell W, Baseman E, Greenfield K. Content+context=classification: Examining the roles of social interactions and linguist content in Twitter user classification. Proceedings of the 2nd Workshop on Natural Language Processing for Social Media (SocialNLP). Dublin: Association for Computational Linguistics and Dublin City University, 2014. 59–65.
    [12] 顾杰. 社交网络账号的智能分类方法[硕士学位论文]. 成都: 电子科技大学, 2019. 3–5.
    [13] Liu J, Inkpen D. Estimating user location in social media with stacked denoising auto-encoders. Proceedings of the 1st Workshop on Vector Space Modeling for Natural Language Processing. Denver: Association for Computational Linguistics, 2015. 201–210.
    [14] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. Proceedings of the 5th International Conference on Learning Representations. Toulon: OpenReview.net, 2017. 198–212.
    [15] Zhang D, Li SS, Wang HL, et al. User classification with multiple textual perspectives. Proceedings of the 26th International Conference on Computational Linguistics: Technical Papers. Osaka: The COLING 2016 Organizing Committee, 2016. 2112–2121.
    [16] Rahimi A, Cohn T, Baldwin T. Semi-supervised user geolocation via graph convolutional networks. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Melbourne: Association for Computational Linguistics, 2018. 2009–2019.
    [17] Hu LM, Yang TC, Shi C, et al. Heterogeneous graph attention networks for semi-supervised short text classification. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). Hong Kong: Association for Computational Linguistics, 2019. 4821–4830.
    [18] Ji M, Sun YZ, Danilevsky M, et al. Graph regularized transductive classification on heterogeneous information networks. Proceedings of the 2010 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Barcelona: Springer, 2010. 570–586.
    [19] Rossi RG, de Paulo Faleiros T, de Andrade Lopes A, et al. Inductive model generation for text categorization using a bipartite heterogeneous network. Proceedings of the 12th IEEE International Conference on Data Mining. Brussels: IEEE, 2012. 1086–1091.
    [20] Dos Santos L, Piwowarski B, Gallinari P. Multilabel classification on heterogeneous graphs with Gaussian embeddings. Proceedings of the 2016 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Riva del Garda: Springer, 2016. 606–622.
    [21] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space. Proceedings of the 1st International Conference on Learning Representations. Scottsdale, 2013. 1–12.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈周国,丁建伟,明杨,费高雷.基于异质图卷积注意网络的社交媒体账号分类.计算机系统应用,2023,32(7):269-275

复制
分享
文章指标
  • 点击次数:510
  • 下载次数: 1375
  • HTML阅读次数: 935
  • 引用次数: 0
历史
  • 收稿日期:2022-12-13
  • 最后修改日期:2023-01-06
  • 在线发布日期: 2023-04-23
文章二维码
您是第11202155位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号