Due to the complexity of social media networks, the classification of social media accounts by mono-nature homogeneous information networks causes information loss and has a negative impact on the classification results. To solve this problem, this study proposes a social media account classification method based on heterogeneous graph convolutional attention networks (HGCANA). Specifically, a heterogeneous information network of social media is constructed, and the social media features of the network are extracted. After that, the attention mechanism is introduced to classify and identify social media accounts. The HGCANA method is compared with the existing methods through experiments, and it is proved that the HGCANA method registers better performance in the effective classification of social media accounts.