摘要:本文基于判别尺度空间跟踪算法, 将位置纠正方法和卡尔曼滤波算法应用于行人跟踪中. 为解决行人因形变和环境变化导致的跟踪不准确的问题, 本文充分利用fhog特征在行人跟踪上的优势, 以判别尺度空间算法中的位置滤波器所计算的位置为中心, 再次提取行人的fhog特征并将其与位置滤波器模板做相关运算, 以此纠正行人位置. 其次, 利用卡尔曼滤波算法对纠正后的行人位置进行预测和再次纠正, 最终在双重纠正的位置上训练新的位置滤波器模板. 本文选取OTB-100中的行人数据集对该方法进行性能测试, 实验结果表明, 在原算法位置上, 再次提取fhog特征进行相关运算能够纠正行人的位置, 同时卡尔曼滤波对纠正位置进行预测和再次纠正, 可使行人的定位精度再次提升.