摘要:水下目标自动检测方法对海洋智能捕捞工作发挥着重要作用, 针对现有目标检测方法存在的对水下生物检测精度不高问题, 提出了一种GA-RetinaNet算法的水下目标检测方法. 首先, 针对水下图像存在密集目标的特点, 通过引入分组卷积替换普通卷积, 在不增加参数复杂度的基础上得到更多特征图, 提高模型的检测精度; 其次, 根据水下生物多为小目标生物的特点, 引入上下文特征金字塔模块(AC-FPN), 利用上下文提取模块保证高分辨率输入的同时获得多个感受野, 提取到更多上下文信息, 并通过上下文注意力模块和内容注意力模块从中捕获有用特征, 准确定位到目标位置. 实验结果显示, 选用URPC2021数据集进行实验, 改进的GA-RetinaNet算法比原算法检测精度提高了2.3%. 相比其他主流模型, 该算法对不同类型的水下目标均获得了较好的检测结果, 检测精度有较大提升.