基于GA-RetinaNet的水下目标检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

河南省科技研发项目(212102210078); 河南省重大科技专项(201300210400); 河南省重点研发与推广专项(科技攻关)(202102210380)


Underwater Object Detection Based on GA-RetinaNet
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    水下目标自动检测方法对海洋智能捕捞工作发挥着重要作用, 针对现有目标检测方法存在的对水下生物检测精度不高问题, 提出了一种GA-RetinaNet算法的水下目标检测方法. 首先, 针对水下图像存在密集目标的特点, 通过引入分组卷积替换普通卷积, 在不增加参数复杂度的基础上得到更多特征图, 提高模型的检测精度; 其次, 根据水下生物多为小目标生物的特点, 引入上下文特征金字塔模块(AC-FPN), 利用上下文提取模块保证高分辨率输入的同时获得多个感受野, 提取到更多上下文信息, 并通过上下文注意力模块和内容注意力模块从中捕获有用特征, 准确定位到目标位置. 实验结果显示, 选用URPC2021数据集进行实验, 改进的GA-RetinaNet算法比原算法检测精度提高了2.3%. 相比其他主流模型, 该算法对不同类型的水下目标均获得了较好的检测结果, 检测精度有较大提升.

    Abstract:

    Automatic underwater object detection methods play an important role in intelligent marine fishing. To address the problem that the existing object detection methods are not accurate enough for underwater biological detection, this study proposes an underwater object detection method based on the GA-RetinaNet algorithm. Firstly, according to the existence of dense objects in underwater images, the study introduces group convolution to replace ordinary convolution, which can provide more feature information without increasing the complexity of parameters and thereby improve the accuracy of the model. Secondly, according to the characteristic that underwater objects are mostly small objects, the attention-guided context feature pyramid network (AC-FPN) is introduced. The context extraction module is used to obtain more receptive fields while guaranteeing high-resolution inputs and thus extract more contextual information. The context attention module and the content attention module are utilized to capture useful features for the accurate positioning of the object. Experimental results show that the improved GA-RetinaNet algorithm enhances the detection accuracy by 2.3% compared with the original algorithm when the URPC2021 dataset is selected. Compared with other mainstream models, the GA-RetinaNet algorithm achieves better detection results for different types of underwater objects, and the detection accuracy is greatly improved.

    参考文献
    相似文献
    引证文献
引用本文

袁明阳,宋亚林,张潮,沈兴盛,李世昌.基于GA-RetinaNet的水下目标检测.计算机系统应用,2023,32(6):80-90

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-12-05
  • 最后修改日期:2023-01-06
  • 录用日期:
  • 在线发布日期: 2023-04-07
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号