面向甲状旁腺检测的椭圆形高斯热图标签分配
作者:
基金项目:

国家自然科学基金(61771141); 福建省自然科学基金(2021J01620); 福建省科技创新联合资金(2018Y9015)


Label Assignment of Ellipse Gaussian Heatmap for Parathyroid Detection
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    近年来基于anchor-free的检测方法相继被提出, 它们采取将目标转化为关键点, 并在全局高斯热图中进行正负样本的标签分配. 这种标签分配策略在一些场景中存在正负样本不平衡的问题, 而且在甲状旁腺检测中不能有效反映目标的形状和方向. 因此, 本文提出了一种新的甲状旁腺检测模型EllipseNet, 首先在GT中构建椭圆形状的高斯分布, 拟合GT中的真正目标, 使得正负样本的分配更加细粒度; 同时提出融入目标形状信息的损失函数对目标的位置进行约束, 进一步提高检测的精度. 此外, 模型中构建了多尺度预测, 能够更好地检测不同大小的目标, 解决甲状旁腺检测中目标尺度不平衡的问题. 本文在甲状旁腺数据集上进行实验, 结果表明, EllipseNet的AP50达到95%, 相比多种主流的检测算法, 其检测精度有较大的提升.

    Abstract:

    Anchor-free-based detection methods have been proposed successively in recent years, and they transform objects into key points and assign labels to positive and negative samples in the global Gaussian heatmap. This label assignment strategy suffers from positive and negative sample imbalance in some scenarios and cannot effectively reflect the shape and orientation of the object in parathyroid detection. Therefore, a new parathyroid detection model, namely, EllipseNet, is proposed in this study, which first constructs an elliptical Gaussian distribution in GT to fit the real object in GT, so as to make the assignment of positive and negative samples more fine-grained. Furthermore, a loss function incorporating the object shape information is proposed to constrain the position of the object, so as to improve the accuracy of detection. In addition, multi-scale prediction is constructed in the model, which can better detect objects of different sizes and solve the problem of target scale imbalance in parathyroid detection. In this study, experiments are conducted on the parathyroid dataset, and the results show that EllipseNet achieves an AP50 of 95%, which is a large improvement in detection accuracy compared with a variety of mainstream detection algorithms.

    参考文献
    [1] Zaidi SSA, Ansari MS, Aslam A, et al. A survey of modern deep learning based object detection models. Digital Signal Processing, 2022, 126: 103514. [doi: 10.1016/j.dsp.2022.103514
    [2] Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696, 2022.
    [3] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [4] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal: MIT Press, 2015. 91–99.
    [5] 谢富, 朱定局. 深度学习目标检测方法综述. 计算机系统应用, 2022, 31(2): 1–12. [doi: 10.15888/j.cnki.csa.008303
    [6] 王军轶, 高明. 甲状旁腺术中快速识别技术的进展. 中国肿瘤临床, 2019, 46(9): 479–483. [doi: 10.3969/j.issn.1000-8179.2019.09.203
    [7] Huang ZC, Li W, Xia XG, et al. A general Gaussian heatmap label assignment for arbitrary-oriented object detection. IEEE Transactions on Image Processing, 2022, 31: 1895–1910. [doi: 10.1109/TIP.2022.3148874
    [8] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
    [9] Lin TY, Goyal P, Girshick R, et al. Focal loss for dense object detection. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017. 2999–3007.
    [10] Tian Z, Shen CH, Chen H, et al. FCOS: Fully convolutional one-stage object detection. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul: IEEE, 2019. 9626–9635.
    [11] Zhou XY, Wang DQ, Krähenbühl P. Objects as points. arXiv:1904.07850, 2019.
    [12] Zand M, Etemad A, Greenspan M. ObjectBox: From centers to boxes for anchor-free object detection. Proceedings of the 17th European Conference on Computer Vision. Tel Aviv: Springer, 2022. 390–406.
    [13] Neubeck A, van Gool L. Efficient non-maximum suppression. Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong: IEEE, 2006. 850–855.
    [14] Zhang SF, Chi C, Yao YQ, et al. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 9756–9765.
    [15] Law H, Deng J. Cornernet: Detecting objects as paired keypoints. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 765–781.
    [16] Zhou XY, Zhuo JC, Krähenbuhl P. Bottom-up object detection by grouping extreme and center points. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019. 850–859.
    [17] He KM, Zhang XY, Ren SQ, et al. Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 770–778.
    [18] Newell A, Yang KY, Deng J. Stacked hourglass networks for human pose estimation. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 483–499.
    [19] Yu F, Wang DQ, Shelhamer E, et al. Deep layer aggregation. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 2403–2412.
    [20] He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916. [doi: 10.1109/TPAMI.2015.2389824
    [21] Zou ZX, Chen KY, Shi ZW, et al. Object detection in 20 years: A survey. arXiv:1905.05055, 2019.
    [22] Tan MX, Pang RM, Le QV. EfficientDet: Scalable and efficient object detection. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 10778–10787.
    [23] Kong T, Sun FC, Liu HP, et al. Foveabox: Beyound anchor-based object detection. IEEE Transactions on Image Processing, 2020, 29: 7389–7398. [doi: 10.1109/TIP.2020.3002345
    [24] Ge Z, Liu ST, Wang F, et al. YOLOX: Exceeding YOLO series in 2021. arXiv:2107.08430, 2021.
    相似文献
    引证文献
引用本文

李宜剑,刘莞玲,陈飞,王波,赵文新.面向甲状旁腺检测的椭圆形高斯热图标签分配.计算机系统应用,2023,32(6):241-250

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-11-28
  • 最后修改日期:2022-12-23
  • 在线发布日期: 2023-04-14
文章二维码
您是第11369897位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号