摘要:针对标准的扩展目标泊松多伯努利(Poisson multi-Bernoulli, PMB)滤波器难以有效跟踪衍生目标的问题, 提出一种改进的PMB跟踪算法. 算法采用随机矩阵法对扩展目标外形和尺寸建模, 在滤波预测阶段利用多假设模型对衍生事件进行预测, 得到多个伽玛高斯逆威沙特 (gamma Gaussian inverse Wishart, GGIW)预测假设分量, 最后在滤波更新阶段对预测分量更新得到扩展目标的运动状态和扩展形状估计. 仿真结果表明, 与标准的PMB滤波算法相比, 所提算法有效改善衍生扩展目标的跟踪性能.