基于GGIW-PMB的衍生扩展目标跟踪
作者:
基金项目:

国家自然科学基金(62263007);桂林电子科技大学数学与计算科学学院研究生创新项目(2022YJSCX02)


Spawning Extended Target Tracking Based on GGIW-PMB
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对标准的扩展目标泊松多伯努利(Poisson multi-Bernoulli, PMB)滤波器难以有效跟踪衍生目标的问题, 提出一种改进的PMB跟踪算法. 算法采用随机矩阵法对扩展目标外形和尺寸建模, 在滤波预测阶段利用多假设模型对衍生事件进行预测, 得到多个伽玛高斯逆威沙特 (gamma Gaussian inverse Wishart, GGIW)预测假设分量, 最后在滤波更新阶段对预测分量更新得到扩展目标的运动状态和扩展形状估计. 仿真结果表明, 与标准的PMB滤波算法相比, 所提算法有效改善衍生扩展目标的跟踪性能.

    Abstract:

    The standard Poisson multi-Bernoulli (PMB) filter for extended targets can hardly track spawning targets effectively. To resolve this problem, this study proposes an improved PMB tracking algorithm. The algorithm uses a random matrix method to model shapes and dimensions of extended targets and adopts a multi-hypothesis model to predict spawning targets in the filtering prediction stage and obtain multiple hypothetical components of gamma Gaussian inverse Wishart (GGIW). Finally, it updates the predicted components in the filtering update stage to estimate the motion state and expansion shapes of extended targets. Simulations show that the proposed algorithm has better tracking performance for spawning extended targets in comparison with the standard PMB filtering algorithm.

    参考文献
    [1] Bar-Shalom Y, Fortmann TE, Cable PG. Tracking and data association. The Journal of the Acoustical Society of America, 1990, 87(2): 918–919. [doi: 10.1121/1.398863
    [2] Granström K, Baum M, Reuter S. Extended object tracking: Introduction, overview and applications. arXiv:1604.00970, 2016.
    [3] Mahler R. PHD filters for nonstandard targets, I: Extended targets. Proceedings of the 12th International Conference on Information Fusion. Seattle: IEEE, 2009. 915–921.
    [4] Koch JW. Bayesian approach to extended object and cluster tracking using random matrices. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1024–1059
    [5] Granström K, Orguner U. A PHD filter for tracking multiple extended targets using random matrices. IEEE Transactions on Signal Processing, 2012, 60(11): 5657–5671. [doi: 10.1109/TSP.2012.2212888
    [6] Lundquist C, Granström K, Orguner U. An extended target CPHD filter and a gamma Gaussian inverse Wishart implementation. IEEE Journal of Selected Topics in Signal Processing, 2013, 7(3): 472–483. [doi: 10.1109/JSTSP.2013.2245632
    [7] 裴佳. 基于随机超曲面的多扩展目标跟踪算法研究[硕士学位论文]. 西安: 西安电子科技大学, 2017.
    [8] Chen YM, Liu WF, Wang XD. Multiple extended target tracking based on GLMB filter and Gibbs sampler. Proceedings of the 2017 International Conference on Control, Automation and Information Sciences (ICCAIS). Chiang Mai: IEEE, 2017. 26–31.
    [9] Granström K, Fatemi M, Svensson L. Poisson multi-Bernoulli mixture conjugate prior for multiple extended target filtering. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 208–225. [doi: 10.1109/TAES.2019.2920220
    [10] Granström K, Fatemi M, Svensson L. Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli filter for extended target tracking. Proceedings of the 19th International Conference on Information Fusion (FUSION). Heidelberg: IEEE, 2016. 893–900.
    [11] Xia YX, Granström K, Svensson L, et al. Extended target Poisson multi-Bernoulli filter. arXiv:1801.01353, 2018.
    [12] Lian F, Han CZ, Liu WF, et al. Sequential Monte Carlo implementation and state extraction of the group probability hypothesis density filter for partly unresolvable group targets-tracking problem. IET Radar, Sonar & Navigation, 2010, 4(5): 685–702
    [13] Granström K, Orguner U. On spawning and combination of extended/group targets modeled with random matrices. IEEE Transactions on Signal Processing, 2013, 61(3): 678–692. [doi: 10.1109/TSP.2012.2230171
    [14] 苗露, 冯新喜, 迟珞珈. 基于GGIW-CPHD的衍生扩展目标跟踪算法. 计算机工程与应用, 2019, 55(9): 118–123. [doi: 10.3778/j.issn.1002-8331.1801-0400
    [15] 马艳琴, 甘林海, 王刚. 基于δ-广义标签多贝努利的群分裂算法. 现代雷达, 2018, 40(12): 46–51
    [16] Cai RH, Xie Y, Wu SY, et al. Tracking the spawning of group with Poisson multi-Bernoulli mixture filter. Proceedings of the 2021 International Conference on Control, Automation and Information Sciences (ICCAIS). Xi’an: IEEE, 2021. 296–300.
    [17] Granström K, Lundquist C, Orguner O. Extended target tracking using a Gaussian-mixture PHD filter. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3268–3286. [doi: 10.1109/TAES.2012.6324703
    [18] Rahmathullah AS, García-Fernández ÁF, Svensson L. Generalized optimal sub-pattern assignment metric. Proceedings of the 20th International Conference on Information Fusion (Fusion). Xi’an: IEEE, 2017. 1–8.
    [19] Givens CR, Shortt RM. A class of Wasserstein metrics for probability distributions. Michigan Mathematical Journal, 1984, 31(2): 231–240
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吕晓燕,吴孙勇,蔡如华,郑翔飞,谢芸.基于GGIW-PMB的衍生扩展目标跟踪.计算机系统应用,2023,32(5):220-226

复制
分享
文章指标
  • 点击次数:709
  • 下载次数: 1528
  • HTML阅读次数: 1092
  • 引用次数: 0
历史
  • 收稿日期:2022-11-06
  • 最后修改日期:2022-12-23
  • 在线发布日期: 2023-03-30
文章二维码
您是第11200890位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号