摘要:潜油电泵井系统是油田开采重要工具, 具有排量大、扬程高与作业环境灵活多变等优点. 为了降低潜油电泵井系统故障危害, 需要对其发生故障部件进行快速精确定位并维修. 本文提出一种基于知识图谱的潜油电泵井故障诊断方法. 采用改进BiLSTM-CRF实体识别算法与BERT关系抽取算法提取故障数据中的专家知识, 构建潜油电泵井故障诊断领域知识图谱; 利用构建知识图谱搭建以故障征兆为初始节点的贝叶斯推理网络, 利用历史故障数据与条件概率解耦的计算方式推理出故障原因. 本文通过故障诊断真实案例进行方法验证.