改进YOLOv5框架的血细胞检测算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省教育厅服务地方项目(JDL2020004)


Improved YOLOv5 Algorithm for Blood Cell Detection
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    对于血液中红细胞、白细胞、血小板等成分的观察和计数是临床医学诊断的重要依据. 血细胞的异常意味着可能存在凝血异常、感染、炎症等与血液相关的问题. 人工检测血细胞不仅耗费人力, 且容易出现误检、漏检的情况. 因此, 针对上述情况, 提出一种新颖的血细胞检测算法—YOLOv5-CBF. 该算法在YOLOv5框架的基础上, 通过在主干网络中加入坐标注意力(coordinate attention, CA)机制, 提高检测精度; 将颈部网络中的FPN+PAN结构中改为结合了跨尺度特征融合方法(bidirectional feature pyramid network, BiFPN)思想的特征融合结构, 使目标多尺度特征有效融合; 在三尺度检测的基础上增加了一个小目标检测层, 提高对数据集中小目标血小板的识别精度. 通过在数据集BCCD上进行的大量的实验结果表明: 与传统的YOLOv5算法相比较, 该算法在3类血细胞检测的平均精度提升2.7%, 试验效果良好, 该算法对血细胞检测具有很高的实用性.

    Abstract:

    The observation and counting of red blood cells, white blood cells, and platelets in the blood are an important basis for clinical medical diagnosis. Abnormal blood cells mean that there may be blood-related problems such as clotting abnormalities, infections, and inflammation. As artificial blood cell detection is not only labor-intensive but also prone to false detection and misses, a novel blood cell detection algorithm YOLOv5-CBF is proposed to address the above problem. On the basis of the YOLOv5 framework, the algorithm improves detection accuracy by adding a coordinate attention (CA) mechanism to the backbone network. The FPN+PAN structure in the neck network is changed to the feature fusion structure combining the idea of the bidirectional feature pyramid network (BiFPN), a cross-scale feature fusion method; in this way, the multi-scale features of the target can be effectively fused. In addition to the three-scale detection, a small target detection layer is added to improve the identification accuracy of small target platelets in the dataset. The results of a large number of experiments conducted on the dataset BCCD show that the algorithm presents an average accuracy improvement of 2.7% in the detection of the three blood cells compared to the conventional YOLOv5 algorithm, demonstrating good performance. The algorithm is highly practical for blood cell detection.

    参考文献
    相似文献
    引证文献
引用本文

张昊,郑广海,张鑫,吕娜.改进YOLOv5框架的血细胞检测算法.计算机系统应用,2023,32(5):123-131

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-10-27
  • 最后修改日期:2022-11-29
  • 录用日期:
  • 在线发布日期: 2023-02-28
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号