摘要:对于血液中红细胞、白细胞、血小板等成分的观察和计数是临床医学诊断的重要依据. 血细胞的异常意味着可能存在凝血异常、感染、炎症等与血液相关的问题. 人工检测血细胞不仅耗费人力, 且容易出现误检、漏检的情况. 因此, 针对上述情况, 提出一种新颖的血细胞检测算法—YOLOv5-CBF. 该算法在YOLOv5框架的基础上, 通过在主干网络中加入坐标注意力(coordinate attention, CA)机制, 提高检测精度; 将颈部网络中的FPN+PAN结构中改为结合了跨尺度特征融合方法(bidirectional feature pyramid network, BiFPN)思想的特征融合结构, 使目标多尺度特征有效融合; 在三尺度检测的基础上增加了一个小目标检测层, 提高对数据集中小目标血小板的识别精度. 通过在数据集BCCD上进行的大量的实验结果表明: 与传统的YOLOv5算法相比较, 该算法在3类血细胞检测的平均精度提升2.7%, 试验效果良好, 该算法对血细胞检测具有很高的实用性.