面向高速公路通行时间分布预测的时空混合密度神经网络
作者:
基金项目:

中央高校基本科研业务费(2019JBM023)


Spatial-temporal Mixture Density Network for Freeway Travel Time Distribution Prediction
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    准确的通行时间分布预测可以全面地反映高速公路路网中各个路段在未来的通行状况, 辅助实现高速公路中的路径规划, 事故事件预警等精细化管理目标. 为此, 本文提出一种面向高速公路通行时间分布预测的时空混合密度神经网络. 具体地, 本文利用自适应图卷积通过数据驱动的方式提取路网中的空间特征, 有效解决了基于预定义图难以捕获路网信息中完整空间相关性的问题. 在时间维度上, 不同时间的路网信息存在显著的相关性, 因此, 本文基于注意力机制自适应建模路网信息的时间相关性, 并通过卷积层进一步聚合相邻时间步之间的信息. 最后, 基于自适应时空相关性建模得到的路段嵌入表示, 通过混合密度网络建模通行时间的分布, 以实现高速公路中各个路段的通行时间分布预测.

    Abstract:

    Accurate travel time distribution prediction can comprehensively reflect the traffic conditions of each road segment of the freeway network in the future and assist in realizing fine management objectives such as route planning and accident warning on freeways. To this end, this study proposes a spatial-temporal neutral network with mixture density for freeway travel time distribution prediction. Specifically, adaptive graph convolution is used to extract the spatial features of the freeway network in a data-driven way, which effectively solves the problem that it is difficult to capture the complete spatial correlation of freeway network information based on predefined graphs. In the temporal dimension, a significant correlation exists in the freeway network at different times. Therefore, this study adaptively models the temporal correlation of freeway network information based on the attention mechanism and further aggregates the information between adjacent time steps through the convolution layer. Finally, according to the embedding of road segments obtained by adaptive spatio-temporal correlation modeling, the travel time distribution is modeled by a mixture density network to predict the travel time distribution in each road segment of freeways.

    参考文献
    [1] 杨兆升. 关于智能运输系统的关键理论——综合路段行程时间预测的研究. 交通运输工程学报, 2001, 1(1): 65–67,89. [doi: 10.3321/j.issn:1671-1637.2001.01.017
    [2] Rashidi S, Ranjitkar P. Estimation of bus dwell time using univariate time series models. Journal of Advanced Transportation, 2015, 49(1): 139–152. [doi: 10.1002/atr.1271
    [3] Zhang JJ, Wu Y, Liu XM. Travel time prediction method based on improved Kalman filter. Proceedings of the 15th COTA International Conference of Transportation Professionals. Beijing: ASCE, 2015. 630–640.
    [4] 邵孙健. 基于收费数据的高速公路行程时间预测及行程时间可靠性研究[硕士学位论文]. 长春: 吉林大学, 2018.
    [5] 韩勇, 周林, 高鹏, 等. 基于BP神经网络的公交动态行程时间预测方法研究. 中国海洋大学学报, 2020, 50(2): 142–154
    [6] 刘松, 彭勇, 邵毅明, 等. 基于门控递归单元神经网络的高速公路行程时间预测. 应用数学和力学, 2019, 40(11): 1289–1298
    [7] Wu CH, Wei CC, Su DC, et al. Travel time prediction with support vector regression. Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems. Shanghai: IEEE, 2003. 1438–1442.
    [8] Theja PVVK, Vanajakshi L. Short term prediction of traffic parameters using support vector machines technique. Proceedings of the 3rd International Conference on Emerging Trends in Engineering and Technology. Goa: IEEE, 2010. 70–75.
    [9] 丁宏飞, 李演洪, 刘博, 等. 基于BP神经网络与SVM的快速路行程时间组合预测研究. 计算机应用研究, 2016, 33(10): 2929–2932, 2936
    [10] Gao P, Hu JM, Zhou H, et al. Travel time prediction with immune genetic algorithm and support vector regression. Proceedings of the 12th World Congress on Intelligent Control and Automation. Guilin: IEEE, 2016. 987–992.
    [11] Fang XM, Huang JZ, Wang F, et al. ConSTGAT: Contextual spatial-temporal graph attention network for travel time estimation at Baidu maps. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2020. 2697–2705.
    [12] Wang Q, Xu C, Zhang WQ, et al. GraphTTE: Travel time estimation based on attention-spatiotemporal graph. IEEE Signal Processing Letters, 2021, 28: 239–243. [doi: 10.1109/LSP.2020.3048849
    [13] Ma JM, Chan J, Rajasegarar S, et al. Multi-attention graph neural networks for city-wide bus travel time estimation using limited data. Expert Systems with Applications, 2022, 202: 117057. [doi: 10.1016/j.eswa.2022.117057
    [14] Bai L, Yao LN, Li C, et al. Adaptive graph convolutional recurrent network for traffic forecasting. Proceedings of the 34th International Conference on Neural Information Processing Systems. Vancouver: ACM, 2020. 17804–17815.
    [15] Zhang S, Tong HH, Xu JJ, et al. Graph convolutional networks: A comprehensive review. Computational Social Networks, 2019, 6(1): 11. [doi: 10.1186/s40649-019-0069-y
    [16] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: ACM, 2017. 1791–1801.
    [17] Bishop CM. Mixture density networks. Technical Report. Birmingham: Aston University, 1994.
    [18] Gardner MW, Dorling SR. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences. Atmospheric Environment, 1998, 32(14–15): 2627–2636.
    [19] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Computation, 1997, 9(8): 1735–1780. [doi: 10.1162/neco.1997.9.8.1735
    [20] Guo SN, Lin YF, Feng N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. Proceedings of the AAAI Conference on Artificial Intelligence. Honolulu: AAAI, 2019. 922–929.
    相似文献
    引证文献
引用本文

杜渐,段洪琳,王振华,毛潇苇,文言.面向高速公路通行时间分布预测的时空混合密度神经网络.计算机系统应用,2023,32(4):308-316

复制
分享
文章指标
  • 点击次数:692
  • 下载次数: 1608
  • HTML阅读次数: 1195
  • 引用次数: 0
历史
  • 收稿日期:2022-09-16
  • 最后修改日期:2022-10-19
  • 在线发布日期: 2023-03-01
文章二维码
您是第11205190位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号