基于自适应阈值的多特征经验融合疲劳检测
作者:
基金项目:

国防基础科研基金(JCKY2020605C003)


Multi-feature Empirical Fusion Fatigue Detection Based on Adaptive Threshold
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在安防领域, 疲劳是导致安防工作人员注意力下降, 诱发各类问题的重要原因. 现有的疲劳检测方法存在各种问题, 比如生理指标检测侵入性强且价格昂贵, 人脸疲劳检测结果受个体差异和头部姿态的影响以及疲劳预警时长较短等, 因此本文提出一种基于自适应阈值和面部多特征经验融合的疲劳早后期检测算法, 使用轻量级的SCRFD模型进行人脸检测, 使用MobileNetV2模型进行人脸关键点定位, 使用梯度提升树学习头部姿态信息与眼睛纵横比(EAR)阈值的映射关系, 通过眼睑闭合时间百分比(PERCLOS)、嘴巴张开时间百分比(FOM)和头部姿态6个自由度分别实现眨眼、哈欠、点头前后倾动作的识别. 在疲劳估计阶段, 为了将多种疲劳行为融合映射成与疲劳相关的KSS值, 先根据专家经验预先构建好多种人脸行为的疲劳因果图, 接着使用自定义的singleton, mutual和activate/inhibit特征算子, 结合因果图从人脸行为检测序列中计算疲劳早期和疲劳后期KSS值, 最后使用双尺度KNN实现疲劳早后期估计. 实验结果表明所提算法在YawDD数据集上哈欠检测准确率达到93.81%, 在UTA-RLDD和Drozy数据集上疲劳识别准确率分别达到67.72%, 87.88%, 仅通过CPU, 推理实时性可达到17.96每秒传输帧数(FPS).

    Abstract:

    In the field of security, fatigue is an important reason for the decrease in the attention of security staff and can cause various problems. The existing fatigue detection methods, however, have many problems, such as the strong invasiveness and high costs of physiological indexes for detection, the impact of individual differences and head poses on the facial fatigue detection results, and the short early-warning time of fatigue. Therefore, this study puts forward an early and late fatigue detection algorithm based on the adaptive threshold and the empirical fusion of multiple facial features. In this algorithm, the lightweight SCRFD model is used for face detection, and the MobileNetV2 model is used to locate the key points of the face. The gradient boosting decision tree (GBDT) is applied to learn the mapping relationship between the head pose information and the eye aspect ratio (EAR) threshold, and the recognition of movements such as blinking, yawning, and leaning forward and backward is achieved through the six degrees of freedom of the percentage of eyelid closure over the pupil time (PERCLOS), the frequency of opening mouth (FOM), and head pose, respectively. In the fatigue estimation stage, various fatigue behaviors should be fused and mapped into fatigue-related KSS values. Hence, the fatigue causality maps of various facial behaviors are constructed in advance according to expert experience. Then, the self-defined singleton, mutual, and activate/inhibit feature operators are used to calculate the KSS values at the early and late stages of fatigue from the facial behavior detection sequences in combination with the causality maps. Finally, the dual-scale KNN is employed to realize the early and late fatigue estimation. The experimental results show that the yawn detection accuracy of the proposed algorithm reaches 93.81% on the YawDD dataset, and the fatigue detection accuracy of the algorithm is 67.72% and 87.88% on UTA-RLDD and Drozy datasets, respectively. The real-time inference performance can reach 17.96 frames per second (FPS) only through the CPU.

    参考文献
    [1] Sigari MH, Fathy M, Soryani M. A driver face monitoring system for fatigue and distraction detection. International Journal of Vehicular Technology, 2013, 2013: 263983
    [2] Mandal B, Li LY, Wang GS, et al. Towards detection of bus driver fatigue based on robust visual analysis of eye state. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(3): 545–557. [doi: 10.1109/TITS.2016.2582900
    [3] Fei YL, Li B, Wang H, et al. Long short-term memory network based fatigue detection with sequential mouth feature. Proceedings of 2020 International Symposium on Autonomous Systems. Guangzhou: IEEE, 2020. 17–22.
    [4] Abtahi S, Omidyeganeh M, Shirmohammadi S, et al. YawDD: A yawning detection dataset. Proceedings of the 5th ACM Multimedia Systems Conference. Singapore: ACM, 2014. 24–28.
    [5] Guo J, Deng JK, Lattas A, et al. Sample and computation redistribution for efficient face detection. Proceedings of the Tenth International Conference on Learning Representations. OpenReview.net, 2022. 1–17.
    [6] Sandler M, Howard A, Zhu ML, et al. MobileNetV2: Inverted residuals and linear bottlenecks. Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 4510–4520.
    [7] Guelman L. Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Systems with Applications, 2012, 39(3): 3659–3667. [doi: 10.1016/j.eswa.2011.09.058
    [8] 罗元, 云明静, 王艺, 等. 基于人眼信息特征的人体疲劳检测. 计算机应用, 2019, 39(7): 2098–2102. [doi: 10.11772/j.issn.1001-9081.2018122441
    [9] Ghoddoosian R, Galib M, Athitsos V. A realistic dataset and baseline temporal model for early drowsiness detection. Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Long Beach: IEEE, 2019. 178–198.
    [10] Wang TS, Shi PF. Yawning detection for determining driver drowsiness. Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology. Suzhou: IEEE, 2005. 373–376.
    [11] Alioua N, Amine A, Rziza M. Driver’s fatigue detection based on yawning extraction. International Journal of Vehicular Technology, 2014, 2014: 678786
    [12] Lepetit V, Moreno-Noguer F, Fua P. EPnP: An accurate O(n) solution to the PnP problem. International Journal of Computer Vision, 2009, 81(2): 155–166. [doi: 10.1007/s11263-008-0152-6
    [13] Zhang ZY. A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. [doi: 10.1109/34.888718
    [14] 景芙蓉. 基于深度学习的疲劳驾驶检测研究与实现[硕士学位论文]. 成都: 电子科技大学, 2021.
    [15] Åkerstedt T, Gillberg M. Subjective and objective sleepiness in the active individual. International Journal of Neuroscience, 1990, 52(1–2): 29–37.
    [16] Massoz Q, Langohr T, François C, et al. The ULg multimodality drowsiness database (called DROZY) and examples of use. Proceedings of 2016 IEEE Winter Conference on Applications of Computer Vision. Lake Placid: IEEE, 2016. 1–7.
    [17] 刘佰强. 基于人脸视频智能分析的日间驾驶员不安全行为检测分类与预警系统[硕士学位论文]. 西安: 西安理工大学, 2020.
    [18] García-García M, Caplier A, Rombaut M. Sleep deprivation detection for real-time driver monitoring using deep learning. Proceedings of the 15th International Conference on Image Analysis and Recognition. Póvoa de Varzim: Springer, 2018. 435–442.
    引证文献
引用本文

王寰希,张德平.基于自适应阈值的多特征经验融合疲劳检测.计算机系统应用,2023,32(4):197-205

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-25
  • 最后修改日期:2022-10-19
  • 在线发布日期: 2023-03-01
文章二维码
您是第11206140位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号