摘要:肝癌仍然是世界癌症死亡的主要原因, 如今血管介入治疗是其主要的治疗方式, 同时肝脏血管影像在该过程中有着关键作用, 能够为专业的医生提供重要的参考价值. 但是通过人工来标注血管是复杂且耗时的任务, 因此实现自动肝脏血管分割对相关工作有着重大意义. 本文提出了注意力门控单元, 用于提高网络信息提取能力, 并将该单元与UNetR网络相结合, 提出一种新的网络结构——UNetR-AGM. 在对腹部CT的预处理上使用了均衡过滤策略, 不仅提高血管和周围组织的对比度, 而且能够对血管完成粗分割. 为了验证所提出方法有效性, 本文将UNetR-AGM与其他人员的研究方法在MSD (medical segmentation decathlon)数据集上进行对比, 并分析算法的准确性. 实验结果表明, 本文采用的方法与其他模型相比具有更好的效果.