摘要:近年来, 国家越来越重视林业的发展, 而林业病害防治问题始终是林业发展过程中的一项重点工作. 针对传统林业病害识别方法存在数据需求量大、模型易过拟合、部分病害类别采样困难, 缺乏标准公开数据集等问题, 提出了一种基于小样本学习的林业病害识别模型(DML-MB模型), 实现了对于林业病害任务的识别. 首先, 利用从林业局获取的林业病害数据, 整理并建立了7类, 共210张林业病害图像数据集. 其次, 模型在训练分类器的过程中引入深度相互学习(DML)策略, 让不同网络在训练时不断分享学习经验, 提升了深度神经网络的性能. 最后, 删除分类器中的全连接层获得特征提取器并迁移到DML-MB模型的元学习网络中进行训练. 实验结果表明, DML-MB模型在林业病害数据集上的1-shot和5-shot的测试精度分别为61.38%和73.56%, 相较于主流的小样本模型, 精度最高提升了2.78%和4.52%.