摘要:针对传统的胸部辅助诊断系统在胸部X光片疾病分类方面图像特征提取效果差、平均准确率低等问题, 提出了一个注意力机制和标签相关性结合的多层次分类网络. 网络的训练分为两个阶段, 在阶段1为了提高网络特征提取能力, 引入注意力机制并构建一个双分支特征提取网络, 实现综合特征的提取, 在阶段2考虑到多标签分类中标签之间相关性等问题, 利用图卷积神经网络对标签相关关系进行建模, 并与阶段1的特征提取结果进行结合, 以实现对胸部X光片疾病的多标签分类任务. 实验结果表明, 本方法在ChestX-ray14数据集上各类疾病的加权平均AUC达到0.827, 有助于辅助医生进行胸部疾病的诊断, 有一定的临床应用价值.