基于注意力与标签相关性的胸部X光片疾病分类
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61806107, 61702135)


Chest X-ray Disease Classification Based on Attentional and Label Correlation
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的胸部辅助诊断系统在胸部X光片疾病分类方面图像特征提取效果差、平均准确率低等问题, 提出了一个注意力机制和标签相关性结合的多层次分类网络. 网络的训练分为两个阶段, 在阶段1为了提高网络特征提取能力, 引入注意力机制并构建一个双分支特征提取网络, 实现综合特征的提取, 在阶段2考虑到多标签分类中标签之间相关性等问题, 利用图卷积神经网络对标签相关关系进行建模, 并与阶段1的特征提取结果进行结合, 以实现对胸部X光片疾病的多标签分类任务. 实验结果表明, 本方法在ChestX-ray14数据集上各类疾病的加权平均AUC达到0.827, 有助于辅助医生进行胸部疾病的诊断, 有一定的临床应用价值.

    Abstract:

    Traditional chest-aided diagnosis systems have poor image feature extraction effects and low average accuracy in disease classification based on chest X-ray images. In view of these problems, a multi-level classification network that combines an attention mechanism and label correlation is proposed. The training of the network is divided into two stages. In stage one, in order to improve the feature extraction capability of the network, an attention mechanism is introduced, and a two-branch feature extraction network is constructed to realize the extraction of comprehensive features. In stage two, according to the correlation between labels and other issues in multi-label classification, a graph convolutional neural network is used to model the label correlation, which is then combined with the feature extraction results obtained in stage one, so as to achieve the multi-label classification task of diseases based on chest X-ray images. The experimental results show that the weighted average AUC of diseases by the proposed method on the ChestX-ray14 dataset reaches 0.827. Therefore, the method can assist doctors in diagnosing chest diseases and has certain clinical application value.

    参考文献
    相似文献
    引证文献
引用本文

王烨楠,程远志,史操,许灿辉.基于注意力与标签相关性的胸部X光片疾病分类.计算机系统应用,2023,32(4):104-111

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-09-07
  • 最后修改日期:2022-09-30
  • 录用日期:
  • 在线发布日期: 2022-12-23
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号