改进YOLOv4的输送带纵向撕裂检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61373099)


Longitudinal Tear Detection Based on Improved YOLOv4 for Conveyor Belt
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    输送带纵向撕裂检测是煤矿安全生产的重要问题之一. 针对矿用输送带纵向撕裂检测存在因数据量不足、损伤形态多样化、极致宽高比而导致的检测精度不足、存在误检与漏检等问题, 本文提出一种改进YOLOv4的输送带纵向撕裂检测算法. 首先, 通过数据增强的方式扩充现有数据, 构建输送带纵向撕裂数据集. 其次, 在主干网络之中添加可变形卷积, 增强模型对多样化损伤形态的特征提取能力. 最后, 在特征融合阶段, 引入跨阶段局部网络(CSPNet)结构, 提升模型对极致宽高比的纵向撕裂检测性能, 进一步降低模型的漏检与误检. 实验结果表明, 输送带纵向撕裂检测准确率达到92.5%, F1分数达到93.1%, 基本满足输送带纵向撕裂检测要求.

    Abstract:

    Longitudinal tear detection of conveyor belts is one of the important issues in coal mine safety production. In the longitudinal tear detection of mining conveyor belts, insufficient detection accuracy, false detections, and missing detections occur due to insufficient data, diversified damage patterns, and extreme aspect ratios. In this study, an improved YOLOv4 longitudinal tear detection algorithm for conveyor belts is proposed. First, the existing data is expanded by data enhancement to construct a longitudinal tear data set for conveyor belts. Secondly, the variable convolution is added to the backbone network to enhance the feature extraction ability of the model for diverse damage patterns. Finally, in the feature fusion stage, the cross-stage partial network (CSPNet) structure is introduced to improve the longitudinal tear detection performance of the model for extreme aspect ratios, and further reduce missing detection and false detection. The experimental results show that the accuracy of the longitudinal tear detection for the conveyor belt reaches 92.5%, and the F1 score reaches 93.1%, which basically meets the requirements of the longitudinal tear detection for the conveyor belt.

    参考文献
    相似文献
    引证文献
引用本文

秦彤,李晓明.改进YOLOv4的输送带纵向撕裂检测.计算机系统应用,2023,32(3):186-194

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-07-16
  • 最后修改日期:2022-09-07
  • 录用日期:
  • 在线发布日期: 2023-01-06
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号