融合语义信息与注意力的图神经网络推荐算法
作者:
基金项目:

中央高校基本科研业务费专项(19CX05003A-11)


Graph Neural Network Recommendation Algorithm Fused with Semantic Information and Attention
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [19]
  • |
  • 相似文献 [5]
  • | | |
  • 文章评论
    摘要:

    基于图神经网络的推荐算法通过从图中获取知识生成节点的特征表示, 提高了推荐结果的可解释性. 然而, 随着推荐系统原始数据规模的不断扩大, 大量包含语义信息的文本数据没有得到有效利用. 同时图神经网络在融合图中邻居信息时没有区分关键节点, 使得模型难以学习到高质量的实体特征, 进而导致推荐质量下降. 本文将图神经网络与语义模型相结合, 提出一种融合语义信息与注意力的图神经网络推荐算法. 该算法基于SpanBERT语义模型处理实体相关的文本信息, 生成包含语义信息的特征嵌入, 并将注意力机制引入到基于用户社交关系以及用户-项目交互的影响传播融合过程中, 从而实现用户和项目两类实体特征的有效更新. 在公开数据集上的对比实验结果表明, 本文所提出的方法较现有基准方法在各项指标上均有所提升.

    Abstract:

    The recommendation algorithm based on the graph neural network generates the feature representation of nodes by obtaining knowledge from graphs, which improves the interpretability of recommendation results. Nevertheless, as the original data scale of the recommendation system continually expands, a large amount of text data containing semantic information has not been effectively used. Additionally, the graph neural network does not distinguish key nodes when fusing the neighbor information in the graph, making it difficult for the model to learn high-quality entity features, which in turn leads to a decrease in the quality of recommendation. This study combines the graph neural network with a semantic model and proposes a recommendation algorithm based on the graph neural network which integrates semantic information and attention. This algorithm processes entity-related text information based on the SpanBERT semantic model and generates feature embeddings containing semantic information. It also introduces the attention mechanism into the process of influence propagation and fusion based on user social relations and user-item interactions to effectively update user and item entity features. The comparative experimental results on public datasets show that the proposed method is better than the existing benchmark methods in all indicators.

    参考文献
    [1] Resnick P, Iacovou N, Suchak M, et al. Grouplens: An open architecture for collaborative filtering of netnews. Proceedings of 1994 ACM Conference on Computer Supported Cooperative Work. Chapel Hill North: ACM, 1994. 175–186.
    [2] Lops P, de Gemmis M, Semeraro G. Content-based recommender systems: State of the art and trends. Recommender Systems Handbook. Boston: Springer, 2011: 73–105. [doi: 10.1007/978-0-387-85820-3_3
    [3] 杨博, 赵鹏飞. 推荐算法综述. 山西大学学报(自然科学版), 2011, 34(3): 337–350. [doi: 10.13451/j.cnki.shanxi.univ(nat.sci.).2011.03.001
    [4] He XN, Liao LZ, Zhang HW, et al. Neural collaborative filtering. Proceedings of the 26th International Conference on World Wide Web. Perth: International World Wide Web Conferences Steering Committee, 2017. 173–182.
    [5] Zheng L, Noroozi V, Yu PS. Joint deep modeling of users and items using reviews for recommendation. Proceedings of the 10th ACM International Conference on Web Search and Data Mining. Cambridge: ACM, 2017. 425–434.
    [6] Zhang Q, Wang JW, Huang HR, et al. Hashtag recommendation for multimodal microblog using co-attention network. Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne: AAAI Press, 2017. 3420–3426.
    [7] 刘华玲, 马俊, 张国祥. 基于深度学习的内容推荐算法研究综述. 计算机工程, 2021, 47(7): 1–12. [doi: 10.19678/j.issn.1000-3428.0060557
    [8] Zhou J, Cui GQ, Hu SD, et al. Graph neural networks: A review of methods and applications. AI Open, 2020, 1: 57–81. [doi: 10.1016/j.aiopen.2021.01.001
    [9] Wu SW, Sun F, Zhang WT, et al. Graph neural networks in recommender systems: A survey. ACM Computing Surveys, 2022, 55(5): 97.
    [10] Li Z, Shen X, Jiao YH, et al. Hierarchical bipartite graph neural networks: Towards large-scale e-commerce applications. Proceedings of 2020 IEEE 36th International Conference on Data Engineering (ICDE). Dallas: IEEE, 2020. 1677–1688.
    [11] 葛尧, 陈松灿. 面向推荐系统的图卷积网络. 软件学报, 2020, 31(4): 1101–1112. [doi: 10.13328/j.cnki.jos.005928
    [12] Fan WQ, Ma Y, Li Q, et al. Graph neural networks for social recommendation. Proceedings of the World Wide Web Conference. San Francisco: ACM, 2019. 417–426.
    [13] Scarselli F, Gori M, Tsoi AC, et al. The graph neural network model. IEEE Transactions on Neural Networks, 2009, 20(1): 61–80. [doi: 10.1109/TNN.2008.2005605
    [14] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach: Curran Associates Inc., 2017. 6000–6010.
    [15] Joshi M, Chen DQ, Liu YH, et al. SpanBERT: Improving pre-training by representing and predicting spans. Transactions of the Association for Computational Linguistics, 2020, 8: 64–77. [doi: 10.1162/tacl_a_00300
    [16] Xue JW, Jiang N, Liang SW, et al. Quantifying the spatial homogeneity of urban road networks via graph neural networks. Nature Machine Intelligence, 2022, 4(3): 246–257. [doi: 10.1038/s42256-022-00462-y
    [17] Yang BS, Yih WT, He XD, et al. Embedding entities and relations for learning and inference in knowledge bases. arXiv:1412.6575, 2014.
    [18] Jamali M, Ester M. A matrix factorization technique with trust propagation for recommendation in social networks. Proceedings of the 4th ACM Conference on Recommender Systems. Barcelona: ACM, 2010. 135–142.
    [19] Wu L, Sun PJ, Fu YJ, et al. A neural influence diffusion model for social recommendation. Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris: ACM, 2019. 235–244.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

闫阳,王雷全,李家瑞.融合语义信息与注意力的图神经网络推荐算法.计算机系统应用,2023,32(4):214-222

复制
分享
文章指标
  • 点击次数:841
  • 下载次数: 1724
  • HTML阅读次数: 1629
  • 引用次数: 0
历史
  • 收稿日期:2022-09-05
  • 最后修改日期:2022-09-30
  • 在线发布日期: 2022-12-06
文章二维码
您是第11418417位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号