基于点重要性判断的点云简化
作者:
中图分类号:

TP391

基金项目:

国家自然科学基金(61731015); 陕西省自然科学基础研究计划(2021-JQ-765); 西安财经大学科学研究扶持计划(20FCJH002); 西安财经大学“青年英才”支持计划


Point Cloud Simplification Based on Point Importance Judgment
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了有效保持散乱点云的显著几何特征, 提高点云简化的精度和效率, 提出一种点重要性判断点云简化方法. 首先, 计算点云中点的重要性, 并根据重要性提取特征点; 然后, 采用八叉树算法对非特征点进行简化, 从而保留点云的主要细节特征, 实现点云简化处理; 最后, 通过对公共点云和文物点云数据模型的简化实验来验证该点云简化方法. 结果表明, 该点重要性判断点云简化方法可以在有效保持点云细节几何特征的同时, 实现点云的有效简化, 是一种快速、高精度的点云简化方法.

    Abstract:

    In order to effectively maintain the significant geometric features of scattered point clouds and improve the accuracy and efficiency of point cloud simplification, a point cloud simplification method based on point importance judgment is proposed. Firstly, the importance of points in point clouds is calculated, and feature points are extracted according to the importance. Then, the octree algorithm is used to simplify the non-feature points, so as to retain the main details of the point cloud and realize the simplification of the point cloud. Finally, the point cloud simplification method is verified by simplifying the data model of public point clouds and cultural relics point clouds. The results show that the point cloud simplification method based on point importance judgment can effectively simplify the point cloud while maintaining the detailed geometric characteristics of the point cloud. It is a fast and high-precision point cloud simplification method.

    参考文献
    [1] 高玉龙, 张应中. 加工面点云数据深度学习的加工特征自动识别. 计算机系统应用, 2022, 31(2): 143–149. [doi: 10.15888/j.cnki.csa.008301
    [2] Gong M, Zhang ZJ, Zeng D. A new simplification algorithm for scattered point clouds with feature preservation. Symmetry, 2021, 13(3): 399. [doi: 10.3390/SYM13030399
    [3] 陈鑫龙, 马荣贵, 梁红涛, 等. 基于法向量距离的路面坑槽提取方法. 计算机系统应用, 2022, 31(5): 222–229. [doi: 10.15888/j.cnki.csa.008483
    [4] Zhang K, Qiao SQ, Wang XH, et al. Feature-preserved point cloud simplification based on natural quadric shape models. Applied Sciences, 2019, 9(10): 2130. [doi: 10.3390/app9102130
    [5] Hegde S, Gangisetty S. PIG-Net: Inception based deep learning architecture for 3D point cloud segmentation. Computers & Graphics, 2021, 95: 13–22. [doi: 10.1016/J.CAG.2021.01.004
    [6] 李大军, 苟国华, 吴天辰, 等. 结构信息约束的三角网格模型简化方法. 测绘科学, 2021, 46(8): 88–95, 164. [doi: 10.16251/j.cnki.1009-2307.2021.08.013
    [7] Li ML, Nan LL. Feature-preserving 3D mesh simplification for urban buildings. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 173: 135–150. [doi: 10.1016/J.ISPRSJPRS.2021.01.006
    [8] Liang YQ, He FZ, Zeng XT. 3D mesh simplification with feature preservation based on whale optimization algorithm and differential evolution. Integrated Computer-aided Engineering, 2020, 27(4): 417–435. [doi: 10.3233/ICA-200641
    [9] Leal E, Sanchez-Torres G, Branch-Bedoya JW, et al. A saliency-based sparse representation method for point cloud simplification. Sensors, 2021, 21(13): 4279. [doi: 10.3390/s21134279
    [10] Wang SG, Peng S, He JW. Simplification algorithm of denture point cloud based on feature preserving. Journal of Computational Methods in Sciences and Engineering, 2021, 21(6): 2035–2048. [doi: 10.3233/JCM-215541
    [11] 张军军, 邢帅, 李鹏程, 等. 边缘系数建筑物雷达点云数据简化方法. 测绘科学, 2016, 41(5): 91–95. [doi: 10.16251/j.cnki.1009-2307.2016.05.020
    [12] Yu SY, Sun S, Yan W, et al. A method based on curvature and hierarchical strategy for dynamic point cloud compression in augmented and virtual reality system. Sensors, 2022, 22(3): 1262. [doi: 10.3390/S22031262
    [13] Sanchez J, Denis F, Coeurjolly D, et al. Robust normal vector estimation in 3D point clouds through iterative principal component analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 163: 18–35. [doi: 10.1016/j.isprsjprs.2020.02.018
    [14] Huang F, Peng SY, Chen SY, et al. VO-LVV—A novel urban regional living vegetation volume quantitative estimation model based on the voxel measurement method and an octree data structure. Remote Sensing, 2022, 14(4): 855. [doi: 10.3390/RS14040855
    [15] Markovic V, Jakovljevic Z, Miljkovic Z. Feature sensitive three-dimensional point cloud simplification using support vector regression. Tehnički Vjesnik, 2019, 26(4): 985–994. [doi: 10.17559/TV-20180328175336
    引证文献
引用本文

赵夫群,李映萱.基于点重要性判断的点云简化.计算机系统应用,2023,32(9):197-202

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-18
  • 最后修改日期:2022-09-27
  • 在线发布日期: 2023-06-30
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号