基于深度学习的网络流量异常识别与检测
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

辽宁省“兴辽英才计划”(XLYC2019019)


Abnormal Network Flow Identification and Detection Based on Deep Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统的工控网络流量数据在复杂网络环境下特征维度高, 特征处理复杂度高, 模型检测效率低等问题, 本文使用了一种基于随机森林(random forest, RF)和长短期记忆网络(long short-term memory, LSTM)结合的流量异常识别与检测方法. 首先使用随机森林算法计算流量特征的重要度评分, 筛选出重要特征, 剔除冗余特征, 然后使用LSTM进行异常流量的识别与检测. 为了评估模型的有效性与优越性, 本文使用准确率、精确率、召回率和F1-score进行模型评价, 并与传统的机器学习方法Naive Bayes、QDA、KNN算法进行对比. 实验结果表明, 在公开数据集CIC-IDS-2017中, 异常流量识别的总体准确率达99%. 与传统的机器学习算法相比, 该方法有效地提高了复杂网络环境下异常检测的准确性和效率, 在工业控制网络安全和异常检测方面具有实际应用价值.

    Abstract:

    Aiming at the problems of the high dimension of features, high complexity of feature processing, and low efficiency of model detection of traditional industrial control network traffic data in complex network environments, this study uses an abnormal network flow identification and detection method based on random forest (RF) and long short-term memory (LSTM) network. Firstly, the random forest algorithm is used to calculate the importance score of flow characteristics, screen out important features, and eliminate redundant features. Then, LSTM is adopted to identify and detect abnormal flows. In order to evaluate the effectiveness and superiority of the model, the accuracy, precision, recall, and F1-score are used in this study to evaluate the model, and the model is compared with traditional machine learning methods including Naive Bayes, QDA, and KNN algorithms. The experimental results show that the overall accuracy of abnormal flow identification reaches 99% on the CIC-IDS-2017 public data set. In addition, compared with traditional machine learning algorithms, the proposed method has effectively improved the accuracy and efficiency of anomaly detection in complex network environments, and it has practical application value in industrial control network security and anomaly detection.

    参考文献
    相似文献
    引证文献
引用本文

邓华伟,李喜旺.基于深度学习的网络流量异常识别与检测.计算机系统应用,2023,32(2):274-280

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-06-04
  • 最后修改日期:2022-08-15
  • 录用日期:
  • 在线发布日期: 2022-11-16
  • 出版日期:
文章二维码
您是第位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号