基于TensorRT的植物叶片病害实时检测分类模型优化
作者:
基金项目:

广东邮电职业技术学院校级质量工程项目(202201); 广东省职业技术教育学会第四届理事会科研规划项目(202103G93); 2022年度广东省普通高校特色创新类项目(2022KTSCX288)


Optimization of Real-time Detection and Classification Model for Plant Leaf Diseases Based on TensorRT
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了提高边缘计算设备对植物叶片病害检测的识别速率, 本研究采用卷积神经网络搭建了植物叶片目标识别模型和植物叶片病害分类模型, 并且使用OpenCV将两个模型整合成植物叶片病害检测系统. 通过SSD (single shot multibox detector)算法对植物叶片的目标区域进行定位并裁剪, 再利用植物叶片病害分类模型对裁剪的植物叶片区域进行病害分类. 同时, 通过TensorRT加速推理对分类模型进行优化处理, 以及在同一台主机设备和Jetson Nano计算平台上, 对优化前后的模型进行了对比实验. 实验表明, 在同一主机设备上优化后的植物分类模型识别速率提升22倍. 同时, 优化后的分类模型使植物叶片病害检测系统识别速率提升7倍. 而将优化后的系统部署在Jetson Nano计算平台上, 对比优化前的植物叶片病害检测速率提升10倍, 实现了实时的植物叶片病害检测.

    Abstract:

    In order to improve the recognition rate of plant leaf disease detection by edge computing devices, this study uses a convolutional neural network to build a plant leaf target recognition model and a plant leaf disease classification model and adopts OpenCV to integrate the two models into a plant leaf disease detection system. The target areas of plant leaves are positioned and clipped by the single shot multibox detector (SSD) algorithm, and then the plant leaf disease classification model is used to classify the clipped plant leaf areas according to diseases. At the same time, the classification model is optimized by TensorRT accelerated inference. In addition, on the same host device and Jetson Nano computing platform, a comparative experiment is carried out on the model before and after optimization. The experiment shows that the recognition rate of the optimized plant classification model on the same host device increases by 22 times. At the same time, the optimized classification model improves the recognition rate of the plant leaf disease detection system by seven times. Furthermore, the optimized system is deployed on the Jetson Nano computing platform, and the detection rate of plant leaf diseases is increased by 10 times compared with that before optimization, which thus realizes real-time plant leaf disease detection.

    参考文献
    [1] 史红栩, 李修华, 李民赞, 等. 基于深度学习的香蕉病害远程诊断系统. 华南农业大学学报, 2020, 41(6): 92–99. [doi: 10.7671/j.issn.1001-411X.202004027
    [2] 乔虹. 基于深度学习的葡萄叶片病害动态监测[硕士学位论文]. 兰州: 甘肃农业大学, 2019.
    [3] Fang Y, Ramasamy RP. Current and prospective methods for plant disease detection. Biosensors, 2015, 5(3): 537–561. [doi: 10.3390/bios5030537
    [4] Cséfalvay L, Di Gaspero G, Matou? K, et al. Pre-symptomatic detection of Plasmopara viticola infection in grapevine leaves using chlorophyll fluorescence imaging. European Journal of Plant Pathology, 2009, 125(2): 291–302. [doi: 10.1007/s10658-009-9482-7
    [5] Oppenheim D, Shani G, Erlich O, et al. Using deep learning for image-based potato tuber disease detection. Phytopathology, 2019, 109(6): 1083–1087. [doi: 10.1094/PHYTO-08-18-0288-R
    [6] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe: Curran Associates Inc., 2012. 1097–1105.
    [7] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 2818–2826.
    [8] Gajjar R, Gajjar N, Thakor VJ, et al. Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform. The Visual Computer, 2022, 38(8): 2923–2938. [doi: 10.1007/s00371-021-02164-9
    [9] Asuncion A, Newman DJ. UCI machine learning repository. Technical Report, Irvine: Irvine University of California, 2007.
    [10] Geetharamani G, Arun Pandian J. Identification of plant leaf diseases using a nine-layer deep convolutional neural network. Computers & Electrical Engineering, 2019, 76: 323–338
    [11] Siddharth SC, Singh UP, Kaul A, et al. A database of leaf images: Practice towards plant conservation with plant pathology. Mendeley Data, 2019, V4.
    [12] Howard AG, Zhu ML, Chen B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications. arXiv:1704.04861, 2017.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

徐泽华,李坚孝,邓树源,吴家隐,高嘉晖,潘明毅.基于TensorRT的植物叶片病害实时检测分类模型优化.计算机系统应用,2023,32(2):94-101

复制
分享
文章指标
  • 点击次数:731
  • 下载次数: 2195
  • HTML阅读次数: 2078
  • 引用次数: 0
历史
  • 收稿日期:2022-06-20
  • 最后修改日期:2022-09-07
  • 在线发布日期: 2022-11-18
文章二维码
您是第11203767位访问者
版权所有:中国科学院软件研究所 京ICP备05046678号-3
地址:北京海淀区中关村南四街4号 中科院软件园区 7号楼305房间,邮政编码:100190
电话:010-62661041 传真: Email:csa (a) iscas.ac.cn
技术支持:北京勤云科技发展有限公司

京公网安备 11040202500063号